专栏名称: 产业智能官
用新一代技术+商业操作系统(AI-CPS OS:云计算+大数据+物联网+区块链+人工智能),在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链。
目录
相关文章推荐
中国能建  ·  不好意思,百亿男主哪吒被拦下了...... ·  9 小时前  
中国能建  ·  独此一家!哈萨克斯坦总统参观中国能建展台 ·  9 小时前  
产品犬舍  ·  我和从 PM ... ·  2 天前  
中国保利  ·  保利UP | 速戳!重大项目新突破 ·  2 天前  
重庆市政府网  ·  1月份市属重点国企利润总额同比增长6.2% ·  2 天前  
51好读  ›  专栏  ›  产业智能官

【数字孪生】关于数字孪生的冷思考及其背后的建模和仿真技术

产业智能官  · 公众号  ·  · 2020-01-22 06:56

正文


张霖 京航空航天大学教授。 曾任国际建模仿真学会 (SCS) 主席, 北 航自动化   学院副院长等,现为 ASIASIM 主席,中国仿真学会常务理事, SCS Fellow ,复杂产品先进制造系统教育部工程研究中心主任,复杂产品智能制造系统技术国家重点实验室学术委员会委员,航天系统国家级仿真重点实验室学术委员会委员,任多个国际期刊编辑及编委。 曾获国家 863 十五周年先进个人和全国优秀科技工作者称号。 研究方向:智能制造系统,复杂系统建模仿真,云制造,模型工程等。


关于数字孪生的冷思考及其背后的建模和仿真技术

近年来,数字孪生( DigitalTwin )一词迅速蹿红,成为一个炙手可热的概念。但随着工业界和学术界对数字孪生的不断解读,其含义却越发扑朔迷离,和其他一些相关概念的界限也越来越模糊。数字孪生到底是什么,能做什么,边界在哪里,它和建模仿真是什么关系等等问题令很多人困惑。本文尝试对其中的一些疑惑进行粗浅的分析。

1  Digital Twin 到底指什么?

由于 Digital Twin 的中文翻译莫衷一是 ( 这个问题稍后会提到 ) ,暂时使用 DT 代表 Digital Twin

在信息领域,一个概念有多种解释已是司空见惯的事情。不过大多概念虽然在开始出现时含义模糊,定义不明,但经过一段时间讨论和沉淀之后,会逐渐形成一致的看法,比如云计算。而 DT 很有意思,它一开始的时候,含义还比较明确,但随着研究的深入,定义和内涵却越来越模糊。另外,很多概念,虽然有多种不同的定义和解释,但大致的区别都在于要么看问题的角度和侧重点不同,要么解释的详细程度不同,要么文字表述方式不同,而概念本身所指向的事物主体却是确定的。像 DT 这样,不同的定义指向不同的主体,却不多见。

DT 一词,业界一般认为,是由密西根大学 MichaelGrieves 教授于 2002 年针对 产品全生命周期管理 (PLM) 提出的一个概念,当初并不叫 Digital Twin ,而是叫镜像空间模型 ( Mirrored Space Model, MSM ) ,后来 NASA John Vickers 将其命名为 Digital Twin [1] 。其模型的属性是很清楚的,尽管当时没有引起太多关注,却也没有什么歧义, DT 就是一个数字化的模型。

但随着 NASA 将其引入 NASA 空间技术路线图》, DT 的含义发生了重要的变化。 NASA 给出的解释是这样的: DT 是充分利用物理模型、传感器更新、运行历史等数据,集成多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成映射,从而反映相对应的实体装备的全生命周期过程 [2]

DT 的主体变成了仿真。

还是这个报告,又很 明确地指出, NASA Digital Twin 就是 基于仿真的系统工程 Simulation-Based Systems Engineering )。

DT 的主体又变成了系统工程。

NASA DT 的这些解读大概是引起后续 DT 的定义和内涵含糊不清的根源。我们不妨列举一些有代表性的定义。

(1) DT 是物理设备的一个实时的数字副本 [3]

(2) DT 是有生命或无生命的物理实体的数字副本。通过连接物理和虚拟世界,数据可以无缝传输,从而使得虚拟实体与物理实体同时存在 [4]

(3) DT 是对人工构建的或自然环境中的资产、流程或系统的数字表示 [5]

(4) DT 是资产和过程的软件表示,用于理解,预测和优化性能以改善业务 [6]

(5) DT 是实际产品或流程的虚拟表示,用于理解和预测对应物的性能特点 [7]

(6) DT 是在云平台上运行的真实机器的耦合模型,并使用来自数据驱动的分析算法以及其他可用物理知识的集成化知识对健康状况进行仿真 [8]

(7) DT 是物理对象或系统在其整个生命周期中的动态虚拟表示,使用实时数据实现理解,学习和推理 [9]

(8) DT 使用物理系统的数字副本执行实时优化 [10]

(9) DT 是现实世界和数字虚拟世界沟通的桥梁 [11]

1 是上面各种定义中所提到的和 DT 有关的各个部分。包括 物理对象、 数据、 模型、 仿真和 仿真结果。


1 DT 相关的各个部分

这些定义分别将 DT 指向图 1 中的不同部分。

第一类:定义 (1)~(5) DT 定义为数字副本、数字表示、软件表示或虚拟表示,指向 ,即 DT 是一个随物理对象实时更新的模型,因为不管是数字副本、数字表示还是软件表示或虚拟表示,都属于模型的范畴。

第二类:定义 (6)~(8) DT 指向 ,即 DT 是模型加仿真。

第三类: 定义 (9) DT 指向 ,即 DT 是连接物理对象和模型之间的桥梁。

那么,作为一个严谨的学术术语,哪一个更合理呢?不妨来分析一下。

第二类将建模和仿真合起来定义成一个新的概念,一方面没有必要,另一方面也不合理。因为模型和仿真虽然密切相关,但确是两件事情。模型是对事物的描述,而仿真则是基于模型的各种活动,就像两个数的量纲不同,是不能直接相加成为一个数的。

第三类听起来很有煽动性,但却最不合理。如果将来自物理对象的数据或是仿真反馈的数据称为 桥梁 到无可厚非,但这两类数据都不能称为物理对象的 Twin

因此,相对而言还是第一类定义最为合理,即 DT 就是物理对象的一个数字化模型。只不过这个模型可以实时接收来自物理对象的数据,从而可以不断演化以保持与物理对象的一致。当然并不是说之前的模型不具备演化特性,只不过之前模型的演化并没有强调实时性。

在关于 DT 的理解中,还有一个问题令人困扰,即一个 DT 是否应该包含物理对象,即图 1 中的 ?这也使得很多人对于 DT 与信息物理系统的关系感到困惑。

造成这个问题的根源也来自 NASA 和美国空军研究办公室的相关文献 [12-13] ,它们认为 DT 的概念由三个不同的部分组成:物理产品,数字 / 虚拟产品以及两个产品之间的连接。即图 1 中的 ①②③ 甚至

但显然这样的解释存在逻辑上的问题。如果 DT 里面包含物理系统,那么这个 Twin 就没有了参照物。因为 Twin 一定是和另一个人(或物体)相对而言的。当然如果将 合起来称为 Twins ,即双胞胎,倒还说得过去,但不能叫 Digital Twins ,因为其中一个是 digital ,另一个是 physical 。所以在 DT 概念里还是应该把物理对象和数字模型这两部分区分开来。

按照前面的分析,若将 DT 定义为物理对象的一个数字化模型,那么 DT 和信息物理系统 (Cyber Physical System) 之间的关系就很容易理清了,即数字模型、基于数字模型的各种活动(仿真)、物理对象以及数字模型和物理对象之间的连接(数据及仿真结果)形成一个信息物理系统,如图 2 所示。


2  DT 和信息物理系统之间的关系

另外,还有一个可能引起歧义的问题,即 DT 中是否应该包含从物理系统采集的数据,即图 1 中的 ?本人认为, DT 概念中不需要也不宜包含这类数据,因为这里的模型是根据这些数据实时演化的,所以数据的信息将在模型中得到体现。而且关于数据还有一个专门的技术,即 Digital Thread 技术,它可以用来处理和 Digital Twin 有关的数据问题。

再来看一下关于 DT 的中文翻译问题。目前虽然数字孪生一词用的较为普遍,但数字双胞胎或数字化双胞胎等称谓仍然经常被使用。

DT 最早翻译为数字化双胞胎或数字双胞胎。后来经专家考证,改为数字孪生。大概的意思是说,双胞胎是指两个人,即双胞胎兄弟或双胞胎姐妹,对应的英文单词应该是 Twins Twin 则是指双胞胎中的一个,所以应该叫孪生。其实孪生这个词在中文里也少见单独使用,多数情况下和兄弟、姐妹连用,如孪生兄弟、孪生姐妹等。不过单从词义的准确性上讲,用数字孪生对应 Digital Twin ,确实比数字双胞胎更合理些。

联想前面提到的关于 DT 概念的各种解释,将 DT 译为数字孪生,也就意味着,默认了 DT 是指模型这一事实,并且不包含物理系统。因为孪生指的是双胞胎中的一个,显然不包含所对应的物理系统本身。如果既包含模型部分又包含物理部分,那叫数字(化)双胞胎应该更合适些,虽然也不算严谨,因为正如前面所说,物理系统不是数字的。

在中文文献中,对 DT 还有一种解读,即将其解释为一种建模的过程和方法,也称为数字孪生技术,而利用这一技术所构建的模型称为数字孪生模型,或数字孪生体。这样的解释显然和 DT 的基本含义无法对应。

DT 概念认识上的模糊不清,也是导致中文翻译一直不能统一的一个重要原因。

综上所述,笔者认为,将 DT 翻译为数字孪生更符合其本来的含义。对于数字孪生可以这样理解:

数字孪生是物理对象的数字模型,该模型可以通过接收来自物理对象的数据而实时演化,从而与物理对象在全生命周期保持一致。基于数字孪生可进行分析、预测、诊断、训练等(即仿真),并将仿真结果反馈给物理对象,从而帮助对物理对象进行优化和决策。物理对象、数字孪生以及基于数字孪生的仿真及反馈一起构成一个信息物理系统 (cyberphysical systems) 。面向数字孪生全生命周期(构建、演化、评估、管理、使用)的技术称为数字孪生技术 (DigitalTwin Technology)

2 数字孪生背后的建模和仿真技术

作为学术研究,我们需要采用一个合理的且没有歧义的概念,而不必纠结于 NASA 对于 DT 的解释。但对于 NASA 所提到的 NASA Digital Twin 的真实目的却不能忽视。事实上很多人对于 DT 的热情和研究动机就来自于 NASA Digital Twin 为制造业的未来带来的无限憧憬。

虽然我们对 NASA 关于 DT 概念的解释并不认同,但换个角度想一想, NASA 其实并没有将 DT 当作一个严肃的学术术语来进行定义。其真正想表达的意思,是强调仿真的价值,即 NASA 飞行器研制需要遵循 基于仿真的系统工程 这一理念。

仿真技术几乎是伴随着计算机技术的诞生而产生的,自上世纪五十年代至今,已经经历了六十多年的发展。由于仿真是以建立模型为基础的,所以为了突出建模的重要性,建模和仿真常常一起出现,即 Modeling &Simulation ,常缩写为 M&S

从下面的这段文字可以看出美国对建模和仿真的认识所达到的高度。这段文字摘录自美国国会于 2007 7 16 日通过的 487 号决议 [14]

美利坚合众国是一个伟大而繁荣的国家,而建模和仿真极大地促进了这一伟大和繁荣。

在美国,建模和仿真是计算机科学和数学的独特应用,它基于模型或仿真的有效性、正确性和可重复性,以及成千上万的美国人在建模和仿真事业中开发这些模型的能力。

政府、工业界和学术界的建模和仿真领域的成员为美国的整体福利做出了突出的贡献,下面的例子可以部分体现建模和仿真为美国做出的贡献,尽管这些贡献不胜枚举:

(1) 曼哈顿计划期间,通过最早复现核链式反应过程的仿真,拓展了对核裂变的理解,最终促成了第二次世界大战的结束;

(2) 作为 库存管理计划 的基本要素,使美国总统能够在不进行真实核试验的情况下,确保核武器库存十年以上的安全性和可靠性,并展示了国家对核不扩散的承诺。

仅从上面两项贡献,便可看出建模和仿真的巨大威力。而在这个决议中,这样的案例共罗列了 11 条。在该决议中还明确提出,建模和仿真是 国家核心技术 ( National Critical Technology )”

下面的内容更加震撼。

1965 年颁布的《高等教育法》是美国历史上第一部高等教育立法 它通过扩展联邦政府在高等教育财政领域的角色,使联邦政府介入美国高等教育的发展,为美国高等教育普及化奠定了基础。该法在美国高等教育改革中具有里程碑的意义 [15]

2018 12 月修订生效的新版高等教育法,专门将建模和仿真作为一项重要的内容( 20 U.S. Code § 1161v - Modeling andsimulation )列入其中 [16] ,并使用大量篇幅说明政府和社会应如何推动建模和仿真技术在大学教育中的普及。在整个法案中,还没有见到任何其他的一项技术能够享受如此高的待遇,即使近年来热火朝天的人工智能技术,都没有出现。

从这两个文件可以看出,建模和仿真技术的基础性和长远价值已远远超出其所在的技术领域范畴,将对国家利益和国家安全产生重大影响。

而在制造业,建模和仿真也一直发挥着不可替代的作用。 2000 年,由美国 DARPA 、商务部、能源部、 NSF 联合发布了一项国家级制造业发展战略研究及 推广计划 集成制造技术路线图 (IntegratedManufacturing Technology Roadmapping, IMTR)” IMTR 提出了未来制造业面临的 6 重大挑战 ,即成为精良、高效的企业,提高响应客户的企业,成为全面互联的企业,保持环境可持续性,进行知识管理,善于应用新技术。不难看出,这六大挑战放到今天也仍然成立。 IMTR 进而提出了迎接这 6 大挑战的 4 类技术对策,即面向制造的信息系统,建模和仿真技术,制造工艺与装备,企业集成。由此可见建模和仿真技术对于制造业的重要性。

而在此报告发布之前的 1997 年,美国国防部对武器采办进行改革,最重要的改革就是提出 基于仿真的采办 ”(Simulation Based Acquisition, SBA) ,即将建模和仿真应用于武器从需求分析到最终报废的全生命周期过程。而洛克希德马丁公司的 F35 则是第一个全面引进 SBA 概念而研制的产品。 2017 11 月,有报道称,洛克希德马丁公司将数字孪生列为未来国防和航天工业六大顶尖技术之首。洛马的数字孪生背后其实是 SBA ,即基于仿真的采办,这与 NASA 的基于仿真的系统工程如出一辙。

建模和仿真技术六十多年前诞生于美国,而且一直都在为美国的国家利益发挥着不可估量的作用,但美国人从来不把建模和仿真拿出来炒作。其中的原因值得我们深思。

3 对数字孪生不宜过度演绎,需保持清醒的头脑

数字孪生( digital twin )这个词之所以能够走红,很大程度上得益于这个词本身的传播特性,它形象,上口,通俗易懂,即使行外人也能从字面上明白个大概,而且还能引发无限的想象。对于科普或商业推广,确实是个好词。但作为一个学术术语,它却缺乏应有的严谨性,至少到目前为止仍然如此。当前有两种倾向值得关注,一是在概念上把数字孪生的内涵不断放大,赋予越来越多的内容,致使与其他概念交叉甚至重叠;二是在应用上将传统技术应用贴上数字孪生的标签。这两种倾向对数字孪生技术的发展都没有好处。

正如前面说讲,数字孪生背后是建模和仿真技术。数字孪生最诱人的地方,是数字模型和物联网的结合,而这种结合的最终目的是为了将模型打磨得更加接近真实系统。物联网技术为建模提供了一种新的强有力的手段,而且在对复杂系统机理缺乏足够认识的情况下,还可基于所采集的数据利用人工智能技术对系统进行建模。这是对建模技术的发展和补充。而基于模型的分析、预测、训练等活动,本来就是仿真要做的事。所以数字孪生本质上是新一代信息技术在建模和仿真中的应用。

经过半个多世纪的发展,建模和仿真已经形成了一个相当完善和系统的技术体系。事实上,在仿真领域,利用动态实时数据进行建模和仿真的方法和技术已经研究多年,如动态数据驱动的仿真( Dynamic Data Driven Simulations, DDDS ),嵌入式仿真,硬件在回路的仿真等。当然,数字孪生作为仿真技术的重要内容,通过与新一代信息技术的融合,将进一步促进建模和仿真技术的发展。

另外,建模和仿真技术体系中很多可以直接用于数字孪生的研究和应用,包括理论、方法、标准、工具和平台,而没有必要在数字孪生的名义下重复开发。这也是 NASA 虽然提出 2027 年实现 Digital Twin 的目标,但后续并没有就 Digital Twin 本身再建立新的技术体系的原因。因为所需要的技术、标准、工具和平台等,在其建模和仿真技术体系里大多都已经存在了。换个标签,再搞一套类似的东西,既浪费资源,又浪费时间。

数字孪生的火爆,名字起的好固然很重要,但更重要的还是得益于西门子、 GE 等行业大鳄们的推波助澜。清醒的业内人士都清楚,数字孪生相关的核心技术大多掌握在外国人手中,如传感技术、 CAD 技术、 CAE 技术、 PLM 技术、 VR/AR 技术等。西门子 , Predix,







请到「今天看啥」查看全文