要处理数据异常,我们要先知道什么是数据异常。首先要有数据,才能知道什么是“异常”。
比如
突然的涨,突如其来的跌
。数据涨跌是我们在日常工作中,最容易被发现的现象,也是我们平时工作中要去分析的。也就是说,平时数据没有波动,也许我们不需要去分析,但是如果
数据有涨或者跌
我们都需要去查出原因的。
相信很多朋友跟我一样,起初接触到数据,我只关心跌,为什么昨天的数据跌了?并去分析其原因,也会关心涨,但并不关心为什么涨,就像买股票一样,跌了痛心疾首,并分析原因,涨了满心欢喜,后悔自己为什么不买入多一点儿。
在数据分析的过程中,我们不仅仅要关心跌,以便采取相应动作,减缓跌的趋势,也更要关心涨,弄清楚涨的原因,并放大它,或者说是复制它!
就像你发现昨天数据跟往前不一样,猛涨了还是猛跌了,通过观测数据发现异常。评估这个变化,可以问“
异常的范围是什么?”“此时的变化是否属于异常?”
发现异常之后,我们要确定这个异常是不是一个问题,有多严重,可以用对比分析法从时间维度上进行
周同比、月同比或者是年同比
。如果确实可以定义为自然增值,那么就没有太大的必要深究,如果定义为异常,那么就可以去挖掘导致变化的原因了。
用多维度拆解法,对于这个异常的指标从不同的维度去拆解,找出原因。
这个步骤主要是考虑商业宣传和产品运营上的影响,是否有相关的操作可能导致该指标的变化?
下面举3个例子
:
(1)例如促销力度加大了
,可能导致下单用户量猛增,但是销售额却没有多大变化;
(2)例如在快手上投放广告
,没有在抖音上进行投放,所以产品里的北方人占比明显增加;
(3)例如在B站进行运营初见成效
,导致产品中弹幕使用量、AWSL、我可以等网络用语激增;
找到原因之后,就是针对性的解决问题了,根据问题的原因,动用公司的相关资源,去解决这个问题。
最后就是执行解决方案,把这个异常数据真正的从异常到执行,完成一个闭环。
举个栗子
:
你现在是做社交APP产品的,在处理数据的过程中,发现某一天的数据异常,该如何分析?
发现问题:
在对数据进行统计汇总时发现某一天的异常数据。
确定问题:
数据跌了那么多,问题是不是很严重呢?往期有没有这么大的浮动?
由上图的周同比和月同比数据可以看出,往期是没有这个问题的,那说明这是一个严重的个例,表示这一天确实发生了什么事情,造成数据异常的情况。
确定原因:
那是不是哪个省份出了问题呢?下面我们按省份进行查看,由下图可以看出,这次数据的猛跌是全国范围内的,基本上所有的省份都有下迭,这样就排除了某个区域下跌的原因。
那是不是设备出问题了呢?再来看不同操作系统的数据有什么不同,由下图可以看出安卓和iOS在这天都出现了下跌,所以排除了设备出问题的可能性。
那是不是服务挂了呢?按小时或者分钟来查看数据是不是符合平时流量规律?
通过上图可以看出,在这一天的0:01分,平台的数据为0,出现了断崖式下跌。而对于社交产品,以往这个时间用户活跃度是很高的,由此可以确定,这一天的数据异常确实是因为服务挂了。
针对性解决问题:
联系相关负责人制定及时有效的解决方案。
执行:
落实和监测解决方案的执行效果。
以上五个步骤
看起来简单,但它是基于
对业务洞察的基础之上的
,需要根据以往的经验,才能做出这些判断。如果对自己的业务不了解,再多的工具或是方法论,都是没有用的。所以,需要大家在工作中,不断的积累,不断的验证。
业务
分析是所有
数据分
析工作的基础
,不懂业务根本没法进行数据分析,也无从判断数据是否异常。所以CDA数据分析师一级把业务
分
析作为重要
考点,
CDA小程序
里也有很多业务
分析
的模拟题,大家可以通过刷题来提升自己。
通过上面的案例解析,发现在确定问题时我们提了很多假设,其实数据只是验证假设的支撑工具。而这些假设是基于对业务有足够了解的基础之上的,在这个过程中,需要不断的去试错,不断的积累行业及业务的洞察,才能做出这些假设。
AI时代,数据是新时代的石油,其改变不仅仅是产业的格局,还有人的认知与决策模式大数据时代,我们收集的数据越来越多,但如何从海量的数据中提取到有价值的信息却越来越难,而数据分析就是从海量的原始数据中获取有价值信息的过程。通过数据收集、清洗、加工和整理,使用科学的统计方法、工具、可视化技术、算法等获取有价值的信息或现象的洞察,以此帮助企业和个人做出更明智的决策。
数据分析师行业的人才需求将大幅增加,行业也将迎来新的发展机遇。
如果渴望在这个充满机遇和挑战的领域中有所作为,那么不妨加入CDA数
据分析敏捷班,与志同道合的伙伴一起,开
启一段全新的职业之旅。
| 行业介绍
各行各业都需要的数据分析,那么是具体哪些行业需求最大呢?
数据分析在当今社会已经渗透到了各行各业,成为了许多企业和组织不可或缺的一部分。无论是金融、医疗、教育、制造还是零售等行业,都需要数据分析来帮助企业更好地理解市场需求、优化运营流程、提高决策效率等。根据相关招聘数据,以下11个行业值得关注:
| 岗位介绍
数据分析已不再“IT”,早已成各个岗位的必备技能
数据分析技能具有很强的通用性和可迁移性。无论是从事哪个行业或领域,掌握数据分析技能都可以帮助个人更好地理解和分析数据,发现问题和机会,提高工作效率和质量。
| 数据人才成长体系
科学完善的课程体系分级,学习更有效
作为专注于数据科学领域课程研发17年的培训机构, CDA数据分析师总结并实践出了一套行业、企业、市场认可的“全栈数据人才成长体系”,从数据分析、数据挖掘、人工智能等方向为学员提供更科学、系统的学习线路和课程,助力学员实现持续的职场岗位晋升和薪酬增长。
| 适合人群
敏捷算法建模训练营周末班 还有1个插班名额
,欢迎大家扫码咨询。
若不方便扫码,搜微信号:
CDAshujufenxi
扫码回复"
敏捷班
",咨询
课程优惠
| 讲师团队
与智者同行,与高人为伍,让大师成为你的私人智库
在这个快速变化的世界中,与智者同行、与高人为伍,成为了我们追求成长和智慧的捷径。智者以他们的深厚学识和独特见解,为我们指明前行的方向;高人则以其卓越的能力和非凡的成就,激励我们不断超越自我。
| 课程案例
高标准师资团队,课程与时俱进,不断融入热门技术
选择智慧启航,就是选择了一个高标准师资团队、前沿技术和优质课程的结合。在这里,你将获得最专业、最全面、最前沿的学习体验,为你的未来奠定坚实的基础。
| 学习平台
四大智能学习系统,高效辅助全程
一线行业大咖,实战业务经验分享,优质学长实用求职方法传授。每月3-4次
| 权威教材
行业权威教材及知识体系
CDA数据分析师就业培训班所使用的教材及相关讲义
(电子版)
,均由CDA数据科学研究院独家支持研发!
10大行业 300+ 套完整行业案例
CDA数据科学研究院是国内率先成立的专注于数据科学领域的专业研究团队,团队具有专业的学术素养、精湛的研究水平,扎实的企业实战经验,丰富的行业资源,通过对各类企业、社会组织等进行全面、系统、深入的调查和访问,从而获得紧跟技术发展的经验与数据,并结合数据行业的未来发展方向进行系统的研究,不断研发新的知识体系和技术应用。
| 学员案例
| 培训成果
专注数据科学前沿技术、人才培养17年、往期学员超百人成为数据科学家,培训学员10万+吸引世界名校学员总数超5000 (哥伦比亚大学、清华大学、北京大学、人民大学等)全国30万+的数据分析从业者,有10万在CDA,行业大咖师资203位、名企内训合作118家、公益直播730场沙龙会议318期。
| 课程大纲
完善系统的教学体系,紧跟时代需求
在瞬息万变的时代里,教育不再是一成不变的灌输,而是需要与时俱进,紧密贴合时代的脉搏。完善系统的教学体系,是我们对教育的坚持和追求,确保每一位学习者都能获得全面、深入、实用的知识和技能。
CDA数据分析敏捷算法训练营周末班
还有1个插班名额