专栏名称: 生信媛
生信媛,从1人分享,到8人同行。坚持分享生信入门方法与课程,持续记录生信相关的分析pipeline, python和R在生物信息学中的利用。内容涵盖服务器使用、基因组转录组分析以及群体遗传。
目录
相关文章推荐
生物学霸  ·  【分享】学霸整理的 PCR 资料 ·  16 小时前  
BioArt  ·  Immunity | 记忆CD8+ ... ·  2 天前  
生物制品圈  ·  翻译协作 | mRNA疫苗的研发趋势 ·  3 天前  
生物学霸  ·  张珍课题组招聘公告 ·  3 天前  
51好读  ›  专栏  ›  生信媛

KEGG数据本地化,再也不用担心网络问题了

生信媛  · 公众号  · 生物  · 2019-12-04 10:41

正文

背景

KEGG.db的包自2011年后不再更新,clusterprofiler做KEGG分析的时候,可以使用KEGG提供的API对所需物种信息进行获取,但是KEGG的服务器有时候会断网,这对我们批量进行数据分析的时候,会发生错误而分析中断。另外,目前我们在云上使用docker是无法联网的(不是云平台的原因)。因此我需要自己自备数据分析来获得更为全面正确的分析结果。

KEGG.db基本信息查看

> library("KEGG.db")
> ls("package:KEGG.db") #
[1] "KEGG" "KEGG_dbconn" "KEGG_dbfile" "KEGG_dbInfo" "KEGG_dbschema"
[6] "KEGGENZYMEID2GO" "KEGGEXTID2PATHID" "KEGGGO2ENZYMEID" "KEGGMAPCOUNTS" "KEGGPATHID2EXTID"
[11] "KEGGPATHID2NAME" "KEGGPATHNAME2ID"
> columns(KEGG.db)
Error in columns(KEGG.db) : object 'KEGG.db' not found
> # columns(org.Hs.eg.db) # show colums in .db
> # columns(KEGG.db) # Error in columns(KEGG.db) : object 'KEGG.db' not found
> # available.dbschemas()
> frame = toTable(KEGGPATHID2EXTID)
> head(frame)
pathway_id gene_or_orf_id
1 hsa00232 10
2 hsa00983 10
3 hsa01100 10
4 hsa00230 100
5 hsa01100 100
6 hsa05340 100

> frame = toTable(KEGGPATHID2NAME)
> head(frame)
path_id path_name
1 hsa00010 Glycolysis / Gluconeogenesis
2 hsa00020 Citrate cycle (TCA cycle)
3 hsa00030 Pentose phosphate pathway
4 hsa00040 Pentose and glucuronate interconversions
5 hsa00051 Fructose and mannose metabolism
6 hsa00052 Galactose metabolism

> class(KEGGPATHID2EXTID)
[1] "AnnDbBimap"
attr(,"package")
[1] "AnnotationDbi"

ls("package:KEGG.db")返回的结果是一些AnnObObj (Bimap objects)。是一种老的AnnotationDbi的interface,现在已经不怎么建议使用了。现在推荐使用select方法(columns()cols()keytypes()等)。

生成简易版KEGG.dbR包的代码

0. 最终的目录结构如下:

KEGG(目录,手动创建)
├── DESCRIPTION(文件,手动创建)
├── inst(目录)
│   └── extdata(目录)
│   └── KEGG.sqlite(文件,通过代码生成)
├── LICENSE(文件,手动创建)
├── NAMESPACE(文件,手动创建)
└── R(目录,手动创建)
└── zzz.R(文件,手动创建)

1. DESCRIPTION文件

参考2011版本的KEGG.db来写:

Package: KEGG.db
Title: KEGG.db for KEGG enrichment analysis.
Description: KEGG.db for KEGG enrichment analysis.
Version: 1.0
Author: xxx
Maintainer: xxx
Depends: R (>= 2.7.0), methods, AnnotationDbi (>= 1.44.0)
Imports: methods, AnnotationDbi
Suggests: DBI
License: BSD
License_restricts_use: yes
biocViews: AnnotationData, FunctionalAnnotation

2. LICENSE文件

参考2011版本的KEGG.db来写:

Free for academic use. Non-academic users are requested to obtain a license agreement with KEGG.

3. NAMESPACE文件

参考2011版本的KEGG.db来写:

import(methods)
import(AnnotationDbi)

### Only put what is statically exported here. All the AnnObj instances
### created at load time are dynamically exported (refer to R/zzz.R for
### the details).
export(
KEGG,
KEGG_dbconn,
KEGG_dbfile,
KEGG_dbschema,
KEGG_dbInfo
)

4. Bimap的生成

查看clusterprofiler的enrichKEGG函数,当使用KEGG.db的数据时,使用了get_data_from_KEGG_db()函数进行数据获取。

get_data_from_KEGG_db function(species) {
PATHID2EXTID "KEGGPATHID2EXTID"))
if (!any(grepl(species, names(PATHID2EXTID)))) {
stop("input species is not supported by KEGG.db...")
}
idx PATHID2EXTID PATHID2EXTID.df PATHID2EXTID.df 2,1)]
PATHID2NAME "KEGGPATHID2NAME"))
PATHID2NAME.df name=unlist(PATHID2NAME))
build_Anno(PATHID2EXTID.df, PATHID2NAME.df)
}
get_KEGG_db function(kw) {
annoDb "KEGG.db"
suppressMessages(requireNamespace(annoDb))
eval(parse(text=paste0(annoDb, "::", kw)))
}

get_data_from_KEGG_db()使用get_KEGG_db()函数从"KEGG.db"中获取了"KEGGPATHID2EXTID"和"KEGGPATHID2NAME"这两个AnnDbBimap。

具体来说,对于get_KEGG_db("KEGGPATHID2EXTID")其实就是执行KEGG.db::KEGGPATHID2EXTID这一条命令。as.list(get_KEGG_db("KEGGPATHID2EXTID"))就是将KEGG.db::KEGGPATHID2EXTID这一条命令返回的结果转成list。

> x > head(x,2)
$hsa00232
[1] "10" "1544" "1548" "1549" "1553" "7498" "9"

$hsa00983
[1] "10" "1066" "10720" "10941" "151531" "1548" "1549" "1551" "1553"
[10] "1576" "1577" "1806" "1807" "1890" "221223" "2990" "3251" "3614"
[19] "3615" "3704" "51733" "54490" "54575" "54576" "54577" "54578" "54579"
[28] "54600" "54657" "54658" "54659" "54963" "574537" "64816" "7083" "7084"
[37] "7172" "7363" "7364" "7365" "7366" "7367" "7371" "7372" "7378"
[46] "7498" "79799" "83549" "8824" "8833" "9" "978"

那AnnDbBimap是怎么生成的?在AnnotationDbi的createAnnObjs.KEGG_DB.R文件里有生成bimap的代码:

KEGG_DB_AnnDbBimap_seeds     list(
objName="PATHID2NAME",
Class="AnnDbBimap",
L2Rchain=list(
list(
tablename="pathway2name",
Lcolname="path_id",
Rcolname="path_name"
)
)
),
list(
objName="PATHID2EXTID",
Class="AnnDbBimap",
L2Rchain=list(
list(
tablename="pathway2gene",
Lcolname="pathway_id",
Rcolname="gene_or_orf_id"
)
)
),
list(
objName="ENZYMEID2GO",
Class="AnnDbBimap",
L2Rchain=list(
list(
tablename="ec2go",
Lcolname="ec_no",
Rcolname="go_id"
)
)
)
)

createAnnObjs.KEGG_DB function(prefix, objTarget, dbconn, datacache)
{
checkDBSCHEMA(dbconn, "KEGG_DB")

## AnnDbBimap objects
seed0 objTarget=objTarget,
datacache=datacache
)
ann_objs
## Reverse maps
ann_objs$PATHNAME2ID "PATHNAME2ID")
ann_objs$EXTID2PATHID "EXTID2PATHID")
ann_objs$GO2ENZYMEID "GO2ENZYMEID")

## 1 special map that is not an AnnDbBimap object (just a named integer vector)
ann_objs$MAPCOUNTS
prefixAnnObjNames(ann_objs, prefix)
}

5. R/zzz.R

具体参考2011版本的KEGG.db。

datacache TRUE, parent=emptyenv())

KEGG function() showQCData("KEGG", datacache)
KEGG_dbconn function() dbconn(datacache)
KEGG_dbfile function() dbfile(datacache)
KEGG_dbschema function(file="", show.indices=FALSE) dbschema(datacache, file=file, show.indices=show.indices)
KEGG_dbInfo function() dbInfo(datacache)

.onLoad function(libname, pkgname)
{
## Connect to the SQLite DB
dbfile "extdata", "KEGG.sqlite", package=pkgname, lib.loc=libname)
assign("dbfile", dbfile, envir=datacache)
dbconn assign("dbconn", dbconn, envir=datacache)
## Create the AnnObj instances
ann_objs "KEGG_DB", "KEGG", "KEGG", dbconn, datacache)
mergeToNamespaceAndExport(ann_objs, pkgname)
packageStartupMessage(AnnotationDbi:::annoStartupMessages("KEGG.db"))
}

.onUnload function(libpath)
{
dbFileDisconnect(KEGG_dbconn())
}

这里,为了简化过程,我们通过AnnotationDbi包的createAnnObjs.SchemaChoice()函数调用了AnnotationDbi里的createAnnObjs.KEGG_DB.R来产生AnnDbBimap。你也可以自己自定义一个加到zzz.R里。具体操作可以参考AnnotationForge,version 2.11 of Bioconductor的Creating an annotation package with a new database schema

6. 添加clusterProfiler做KEGG富集分析所需数据

packagedir "你创建的KEGG目录所在的路径"
sqlite_path "inst", "extdata")
if(!dir.exists(sqlite_path)){dir.create(sqlite_path,recursive = TRUE)}
dbfile "KEGG.sqlite")
unlink(dbfile)

###################################################
### download data
###################################################
species "hsa"
# KEGG的物种列表查看:
# https://www.genome.jp/kegg/catalog/org_list.html
# 或者
# http://rest.kegg.jp/list/organism
kegg KEGGPATHID2NAME colnames(KEGGPATHID2NAME) "path_id","path_name")
KEGGPATHID2NAME$path_id "",KEGGPATHID2NAME$path_id)

KEGGPATHID2EXTID colnames(KEGGPATHID2EXTID) "pathway_id","gene_or_orf_id")

###################################################
### create database
###################################################
## Create the database file
library(RSQLite)
drv "SQLite")
db ## dbDisconnect(db)

###################################################
### put the data into the tables
###################################################
dbWriteTable(conn = db, "pathway2name", KEGGPATHID2NAME, row.names=FALSE)
dbWriteTable(conn = db, "pathway2gene", KEGGPATHID2EXTID, row.names=FALSE)
dbListTables(db)
test "pathway2name")
head(test)
test "pathway2gene")
head(test)

###################################################
### append the metadata
###################################################
#dbSendQuery(conn = db,"drop table if exists metadata")
metadata "PATHNAMESOURCENAME", "KEGG PATHWAY"),
c("PATHNAMESOURCEURL", "ftp://ftp.genome.jp/pub/kegg/pathway"),
c("PATHNAMESOURCEDATE", format(Sys.Date(), "%Y%m%d")),
c("KEGGSOURCENAME", "KEGG GENOME"),
c("KEGGSOURCEURL", "ftp://ftp.genome.jp/pub/kegg/genomes"),
c("KEGGSOURCEDATE", format(Sys.Date(), "%Y%m%d")),
c("GOEXTSOURCEDATE", "2015-Sepec2go27"),
c("GOEXTSOURCENAME", "Gene Ontology External Link"),
c("GOEXTSOURCEURL", "http://www.geneontology.org/external2go"),
c("Db type", "KEGGDB"),
c("DBSCHEMA", "KEGG_DB"),
c("DBSCHEMAVERSION", "2.1"))

metadata colnames(metadata) "name", "value") #makeAnnDbPkg规定的
dbWriteTable(conn = db, "metadata", metadata, row.names=FALSE)

map.counts "pathway2name", nrow(KEGGPATHID2NAME)),
c("pathway2gene", nrow(KEGGPATHID2EXTID)))
map.counts colnames(map.counts) "map_name","count")
dbWriteTable(conn = db, "map_counts", map.counts, row.names=FALSE)

dbListTables(db)
dbListFields(conn = db, "metadata")
dbReadTable(conn = db,"metadata")


map.metadata "ENZYMEID2GO","Gene Ontology External Link","http://www.geneontology.org/external2go","2015-Sepec2go27"),
c("GO2ENZYMEID","Gene Ontology External Link","http://www.geneontology.org/external2go","2015-Sepec2go27"),
c("EXTID2PATHID","KEGG GENOME","ftp://ftp.genome.jp/pub/kegg/genomes","2011-Mar15"),
c("PATHID2EXTID","KEGG GENOME","ftp://ftp.genome.jp/pub/kegg/genomes","2011-Mar15"),
c("PATHNAME2ID","KEGG PATHWAY","ftp://ftp.genome.jp/pub/kegg/pathway",format(Sys.Date(),"%Y%m%d")),
c("PATHID2NAME","KEGG PATHWAY","ftp://ftp.genome.jp/pub/kegg/pathway",format(Sys.Date(),"%Y%m%d")))
map.metadata colnames(map.metadata) "map_name","source_name","source_url","source_date")
dbWriteTable(conn = db, "map_metadata", map.metadata, row.names=FALSE)


dbListTables(db)
dbListFields(conn = db, "map_metadata")
dbReadTable(conn = db,"map_metadata")
dbDisconnect(db)

7. 生成R包

新开一个RStudio :File → New Project


有1条warning,我给忽略了。

8. 测试刚刚生成的包
install.packages("D:/test/KEGG.db_1.0.tar.gz", repos=NULL,type = "source")
library(KEGG.db)
library(clusterProfiler)
data(geneList, package="DOSE")
head(geneList)
gene 2]
head(gene)

kk organism = 'hsa',
pvalueCutoff = 0.05,
qvalueCutoff = 0.05,
use_internal_data =T)
# 使用线上拉取的数据,则use_internal_data = F
head(kk)
nrow(kk)

结果对比:

好了,打完收工。

注:最简单粗暴的方式其实是在安装了KEGG.db后,使用本文添加数据的方法,将sqlite里的数据直接替换掉。

上面的内容是「生信媛」公众号的小伙伴投的稿。

开始Y叔叔的表演

写得详细,虽然说follow下来的人都可以创建属于自己的KEGG.db,但对于小白来说,感觉看到这么多代码,会蒙圈。当然打好包供大家下载也不是办法,一来可能KEGG会找麻烦,他自己是开放给人家去爬数据,但你打包给别人用可能是不允许的。第二那么多的物种,提供给你的可能不是你想要。第三打包还得隔段时间更新。

在我看完这篇文章之后,我当场就提议,不如一起写个R包,这个R包的功能,就是你给个物种名,它负责去抓数据,然后生成KEGG.db,也就是一键到最后一步,用户只要安装,就可以在clusterProfiler中离线用最新的KEGG数据了。完美~ 

写个R包,让它去生成另一个R包,这操作我也觉得挺6的

安装一条指令

remotes::install_github("YuLab-SMU/createKEGGdb")

使用

只有一条命令,create_kegg_db,参数是你给定的物种,比如人的是hsa,函数的输出就是在当前目录下生成一个KEGG.db_1.0.tar.gz的R包。

安装这个KEGG.db包

也是一条指令:

install.packages("KEGG.db_1.0.tar.gz", type="source")

然后你就可以使用前面文章中的第8步用clusterProfiler去分析了。

可重复性研究

在线抓最新数据固然好,但不好重复啊,你分析了之后,过了几个月了,准备投稿,发现之前选定的通路重复不出来了,欲哭无泪怎么办?现在自己打KEGG.db包,也就是你把时间点给固定了,什么时候重新跑,只要你用的还是原来的KEGG.db,你必须就可以重复出来。也就是它给了你可以回到过去的「月光宝盒」。

往期精彩