1. 《微波工程》第八章
2. 《microstrip filters for RF/Microwave applications》第五章
3. A New Matlab Simulation Interface Based on the Transmission Line Theory Approach to Design a Microstrip Parallel Coupled BandPass Filters
附录:MATLAB代码
% 主程序
% 公式适用的参数范围:0.2<=W/h<=2; 0.05<=s/h<=2;epsilon_r>=1
% 该程序适用于0.5 dB等波纹5阶耦合线滤波器设计
clc;clear all;close all;
% light velocity in vacuum
c=3e8;
% center frequency
f=2.62e9;
% fractional bandwidth
FBW=0.15;
% 馈线阻抗
Z0=50;
% thickness of dielectric substrate
h=1.0e-3;
% relative dielectrci constant of dielectrci substrate
epsilon_r=6.5;
% 滤波器阶数
N=5;
% 低通原型参数值,《微波工程》中文版第三版,表8.4,0.5 dB波纹
g_n=[1.7058
1.2296
2.5408
1.2296
1.7058
1];
% microstrip filters for RF/Microwave applications
% Eq.(5.21);原文公式有误;可参考微波工程 8.121 式
J_n=zeros(1,N+1);
for nn01=1:N+1
if nn01==1
J_n(nn01)=sqrt(pi/2*FBW/(g_n(nn01)))/Z0;
elseif nn01<=N
J_n(nn01)=pi/2*FBW/sqrt(g_n(nn01-1)*g_n(nn01))/Z0;
else
J_n(nn01)=sqrt(pi/2*FBW/(g_n(nn01-1)*g_n(nn01)))/Z0;
end
end
% 偶模阻抗
Z0e=Z0.*(1+J_n.*Z0+(J_n.*Z0).^2);
% 奇模阻抗
Z0o=Z0.*(1-J_n.*Z0+(J_n.*Z0).^2);
Z=[Z0e' Z0o'];
% 在已知奇模阻抗、偶模阻抗时,通过扫描法获取耦合线线宽和间隙
% 耦合线宽度扫描范围设定
W=0.1e-3:0.01e-3:4e-3;
% 耦合线间隙扫描范围设定
s=0.02e-3:0.01e-3:3e-3;
Zce_opt_out=zeros(1,length(Z(:,1)));
Zco_opt_out=zeros(1,length(Z(:,1)));
W_out=zeros(1,length(Z(:,1)));
s_out=zeros(1,length(Z(:,1)));
epsilon_re_e_out=zeros(1,length(Z(:,1)));
epsilon_re_o_out=zeros(1,length(Z(:,1)));
delta_length_out=zeros(1,length(Z(:,1)));
for nn3=1:length(Z(:,1))
% 先假设最优的线宽和间隙值
W_opt=min(W);
s_opt=min(s);
[Zce_opt, Zco_opt, epsilon_re_e, epsilon_re_o, delta_length]=...
func_coupled_line_01(W_opt,s_opt,h,epsilon_r);
value01=sqrt((Zce_opt-Z(nn3,1))^2+(Zco_opt-Z(nn3,2))^2);
% 在扫描范围内遍历求解,判据就是奇模阻抗、偶模阻抗是否与预想值接近
for nn1=1:length(W)
for nn2=1:length(s)
W0=W(nn1);
s0=s(nn2);
[Zce, Zco, epsilon_re_e, epsilon_re_o, delta_length]=...
func_coupled_line_01(W0,s0,h,epsilon_r);
% 如果有更优的尺寸,就替代
if sqrt((Zce-Z(nn3,1))^2+(Zco-Z(nn3,2))^2)
Zce_opt_out(nn3)=Zce;
Zco_opt_out(nn3)=Zco;
W_out(nn3)=W0;
s_out(nn3)=s0;
epsilon_re_e_out(nn3)=epsilon_re_e;
epsilon_re_o_out(nn3)=epsilon_re_o;
delta_length_out(nn3)=delta_length;
value01=sqrt((Zce_opt_out(nn3)-Z(nn3,1))^2+(Zco_opt_out(nn3)-Z(nn3,2))^2);
end
end
end
end
Z_out=[Zce_opt_out' Zco_opt_out'];
data_out=[W_out'.*1000 s_out'.*1000 Zce_opt_out' Zco_opt_out' epsilon_re_e_out' epsilon_re_o_out' delta_length_out'.*1000];
% Eq.(5.23) 计算耦合线长度
length_revise=c./f./(4.*(epsilon_re_e_out.*epsilon_re_o_out).^0.25)-delta_length_out;
% 设计结果(依次为线宽、间隙及长度),单位为毫米
data_out01=[W_out'.*1000 s_out'.*1000 length_revise'.*1000];
%% 检查设计结果是否超出公式适用范围
if max(W_out)/h>2 || min(W_out)/h<0.2
disp('width out!')
end
if max(s_out)/h>2 || min(s_out)/h<0.05
disp('gap out!')
end
% microstrip filters for RF-microwave applications
% 该函数的作用:根据耦合线板材参数和几何参数计算电参数
% 板材参数:介质板厚度、介质板相对介电常数
% 几何参数:耦合线线宽及间隙宽度
% 电参数:奇模阻抗、偶模阻抗、奇模有效介电常数、偶模有效介电常数、长度修正量
function [Zce, Zco, epsilon_re_e, epsilon_re_o, delta_length]...
=func_coupled_line_01(W,s,h,epsilon_r)
% thickness of dielectric substrate
% h=1.56e-3;
% relative dielectrci constant of dielectrci substrate
% epsilon_r=2.63;
% width of strip
% W=4.9e-3;
% gap between strip
% s=3.1e-3;
%% for dielectric
u=W/h;
% Eq.(4.4): epsilon_r<=128, 0.01<=u<=100
a=1+1/49*log((u^4+(u/52)^2)/(u^4+0.432))+1/18.7*log(1+(u/18.1)^3);
b=0.564*((epsilon_r-0.9)/(epsilon_r+3))^0.053;
epsilon_re=(epsilon_r+1)*0.5+0.5*(epsilon_r-1)*(1+10/u).^(-a*b);
% Eq.(4.5):u<=1000
eta=120*pi;
F=6+(2*pi-6)*exp(-(30.666/u)^0.7528);
Zc=eta/(2*pi*sqrt(epsilon_re))*log(F/u+sqrt(1+(2/u)^2));
%%
% Eq.(4.33) 0.1<=u<=10;0.1<=g<=10;1
g=s/h;
v=u*(20+g^2)/(10+g^2)+g*exp(-g);
ae=1+1/49*log((v^4+(v/52)^2)/(v^4+0.432))+1/18.7*log(1+(v/18.1)^3);
be=0.564*((epsilon_r-0.9)/(epsilon_r+3))^0.053;
epsilon_re_e=(epsilon_r+1)*0.5+0.5*(epsilon_r-1)*(1+10/v)^(-ae*be);
% Eq.(4.34)
ao=0.7287*(epsilon_re-0.5*(epsilon_r+1))*(1-exp(-0.179*u));
bo=0.747*epsilon_r/(0.15+epsilon_r);
co=bo-(bo-0.207)*exp(-0.414*u);
do=0.593+0.694*exp(-0.526*u);
epsilon_re_o=epsilon_re+(0.5*(epsilon_r+1)-epsilon_re+ao)*exp(-co*g^do);
% Eq.(4.35); 0.1<=u<=10;0.1<=g<=10;1
Q1=0.8685*u^0.194;
Q2=1+0.7519*g+0.189*g^2.31;
Q3=0.1975+(16.6+(8.4/g)^6)^(-0.387)+1/241*log(g^10/(1+(g/3.4)^10));
Q4=2*Q1/Q2/(u^Q3*exp(-g)+(2-exp(-g))*u^(-Q3));
Zce=Zc*sqrt(epsilon_re/epsilon_re_e)/(1-Q4*sqrt(epsilon_re)*Zc/377);
% Eq.(4.36)
Q5=1.794+1.14*log(1+0.638/(g+0.517*g^2.43));
Q6=0.2305+1/281.3*log(g^10/(1+(g/5.8)^10))+1/5.1*log(1+0.598*g^1.154);
Q7=(10+190*g^2)/(1+82.3*g^3);
Q8=exp(-6.5-0.95*log(g)-(g/0.15)^5);
Q9=log(Q7)*(Q8+1/16.5);
Q10=Q4-Q5/Q2*exp(Q6*log(u)/u^Q9);
Zco=Zc*sqrt(epsilon_re/epsilon_re_o)/(1-Q10*sqrt(epsilon_re)*Zc/377);
% Eq.(4.40)
ksi1=0.434907*(epsilon_re^0.81+0.26*(W/h)^0.8544+0.236)/(epsilon_re^0.81-0.189*(W/h)^0.8544+0.87);
ksi2=1+(W/h)^0.371/(2.35*epsilon_r+1);
ksi3=1+(0.5274*atan(0.084*(W/h)^(1.913/ksi2)))/epsilon_re^0.9236;
ksi4=1+0.037*atan(0.067*(W/h)^1.456)*(6-5*exp(0.036*(1-epsilon_r)));
ksi5=1-0.218*exp(-7.5*W/h);
delta_length=h*ksi1*ksi3*ksi5/ksi4;
FindRF最新快讯:
FindRF已经成为著名放大器品牌CPI的代理商,欢迎感兴趣的亲们直接联系[email protected]!