近期,人工智能领域的顶级会议——2024年神经信息处理系统会议(NeurIPS)拉开帷幕。
会上收录的亚马逊论文,展示了其在人工智能研究领域的广泛性。
近年来,大语言模型(LLM)和其他基础模型在该领域占据主导地位,
亚马逊的论文反映了这一趋势,涵盖检索增强生成、使用大语言模型进行代码生成、常识推理和多模态模型等主题
。训练方法也是备受关注的领域,相关论文涉及了内存高效训练、基于人类反馈的强化学习、拒绝分类以及Transformer模型的收敛速度等。
亚马逊的论文也展示了对多臂老虎机问题(亚马逊长期向NeurIPS提交论文的主要内容)和语音处理等主题的持续
关注,还有诸如将机器学习应用于科学计算和自动推理等新领域。一篇题为《B’MOJO: Hybrid state space realizations o
f foundation models with eidetic and fading memory》的论文,就提出了一种基于转导学习概念的机器学习新范式。
Mirco Giacobbe、Daniel Kroening、Abhinandan Pal、Michael Tautschnig
https://www.amazon.science/publications/neural-model-checking
Adaptive experimentation when you can’t experiment
Yao Zhao、Kwang-Sung Jun、Tanner Fiez、Lalit Jain
https://www.amazon.science/publications/adaptive-experimentation-when-you-cant-experiment
Online posterior sampling with a diffusion prior
Branislav Kveton、Boris Oreshkin、Youngsuk Park、Aniket Deshmukh、Rui Song
https://www.amazon.science/publications/online-posterior-sampling-with-a-diffusion-prior
Training LLMs to better self-debug and explain code
Nan Jiang、Xiaopeng LI、Shiqi Wang、Qiang Zhou、Baishakhi Ray、Varun Kumar、Xiaofei Ma、Anoop Deoras
https://www.amazon.science/publications/training-llms-to-better-self-debug-and-explain-code
Can language models learn to skip steps?
Tengxiao Liu、Qipeng Guo、Xiangkun Hu、Jiayang Cheng、Yue Zhang、Xipeng Qiu、Zheng Zhang
https://www.amazon.science/publications/can-language-models-learn-to-skip-steps
WindsorML:High-fidelity computational fluid dynamics dataset for automotive aerodynamics
Neil Ashton、Jordan B. Angel、Aditya S. Ghate、Gaetan K. W. Kenway、Man Long Wong、Cetin Kiris、Astrid Walle、Danielle Maddix Robinson、Gary Page
https://www.amazon.science/publications/windsorml-high-fidelity-computational-fluid-dynamics-dataset-for-automotive-aerodynamics
SetLexSem Challenge: Using set operations to evaluate the lexical and semantic robustness of language models
Bardiya Akhbari、Manish Gawali、Nicholas Dronen
https://www.amazon.science/publications/setlexsem-challenge-using-set-operations-to-evaluate-the-lexical-and-semantic-robustness-of-language-models
为了评估大语言模型对集合成员语义变化的鲁棒性,亚马逊研究人员及其同事通过对上位词对(例如“哺乳动物”和“车辆”)进行采样,创建了“欺骗性”集合,并从中提取三种不同条件下的下位词:
大语言模型在第二个条件(交换)下表现出独特的故障模式,第一个条件(未交换)的准确率均值和方差优于随机基线。上图可在该论文中找到。
Online weighted paging with unknown weights
Orin Levy、Aviv Rosenberg、Noam Touitou
https://www.amazon.science/publications/online-weighted-paging-with-unknown-weights
B’MOJO:Hybrid state space realizations of foundation models with eidetic and fading memory
Luca Zancato、Arjun Seshadri、Yonatan Dukler、Aditya Golatkar、Yantao Shen、Ben Bowman、Matthew Trager、Alessandro Achille、Stefano Soatto
https://www.amazon.science/publications/bmojo-hybrid-state-space-realizations-of-foundation-models-with-eidetic-and-fading-memory
Pre-training differentially private models with limited public data
Zhiqi Bu、Xinwei Zhang、Sheng Zha、Mingyi Hong
https://www.amazon.science/publications/pre-training-differentially-private-models-with-limited-public-data
Reconstruction attacks on machine unlearning: Simple models are vulnerable
Martin Bertran Lopez、Shuai Tang、Michael Kearns、Jamie Morgenstern、Aaron Roth、Zhiwei Steven Wu
https://www.amazon.science/publications/reconstruction-attacks-on-machine-unlearning-simple-models-are-vulnerable
RAGChecker:A fine-grained framework for diagnosing retrieval-augmented generation
Dongyu Ru、Lin Qiu、Xiangkun Hu、Tianhang Zhang、Peng Shi、Shuaichen Chang、Cheng Jiayang、Cunxiang Wang、Shichao Sun、Huanyu Li、Zizhao Zhang、Binjie Wang、Jiarong Jiang、Tong He、Zhiguo Wang、Pengfei Liu、Yue Zhang、Zheng Zhang
https://www.amazon.science/publications/ragchecker-a-fine-grained-framework-for-diagnosing-retrieval-augmented-generation
CA-SSLR:Condition-aware self-supervised learning representation for generalized speech processing
Yen-Ju Lu、Jing Liu、Thomas Thebaud、Laureano Moro-Velazquez、Ariya Rastrow、Najim Dehak、Jesus Villalba
https://www.amazon.science/publications/ca-sslr-condition-aware-self-supervised-learning-representation-for-generalized-speech-processing
如论文提及,CA-SSLR方案及其时间通道注意力调节器,只有解码器的调节器和线性投影是可训练的,所有其他参数在适应过程中都被冻结。CA-SSLR通过集成中间LID/SV条件、保持预训练参数冻结(左)来改进SSL功能。可训练的时间通道注意力调节器集成了语言和发言人预测(右)。
CoMERA:Computing- and memory-efficient training via rank-adaptive tensor optimization
Zi Yang、Ziyue Liu、Samridhi Choudhary、Xinfeng Xie、Cao Gao、Siegfried Kunzmann、Zheng Zhang
https://www.amazon.science/publications/comera-computing-and-memory-efficient-training-via-rank-adaptive-tensor-optimization
Optimal design for human preference elicitation
Subhojyoti Mukherjee、Anusha Lalitha、Kousha Kalantari、Aniket Deshmukh、Ge Liu、Yifei Ma、Branislav Kveton
https://www.amazon.science/publications/optimal-design-for-human-preference-elicitation
Rejection via learning density ratios
Alexander Soen、Hisham Husain、Philip Schulz、Vu Nguyen
https://www.amazon.science/publications/rejection-via-learning-density-ratios
Unraveling the gradient descent dynamics of transformers
Bingqing Song、Boran Han、Shuai Zhang、Jie Ding、Mingyi Hong
https://www.amazon.science/publications/unraveling-the-gradient-descent-dynamics-of-transformers