两道光束,从中国“墨子号”卫星向地球发出。6月16日,我国科学家利用“墨子号”量子卫星率先实现了千公里级的星地双向量子纠缠分发,再次震动了全球。
因这一史诗级实验成果,“墨子号”登上了《科学》杂志封面。这到底是什么神奇的成果,引发全球关注?
中国墨子号卫星首次实现1200公里量子纠缠,震惊国外专家
在量子加密通信的研究领域,如何长距离传输纠缠光子一直是个很大的难题。不过最近我国的科学家们,利用去年八月发射的墨子号量子卫星,在这件事上取得了一些突破。研究者们成功从太空中,往相距约 1200 公里的云南丽江和青海德令哈地面站发送了纠缠光子对。本文由雷锋网编译。
去年年底的某个晴朗的夜晚,一个绿色的星点出现在中缅边界的地平线附近。正在丽江郊外观测站的物理学家,中国科技大学教授陆朝阳观测到了这一现象,他说:“这很像一个非常明亮的绿色星体。”
陆教授和他的同事们必须赶快采取行动。因为那个绿色星体其实是来自于 300 英里上空正在运行的卫星发出的一道激光,它就像一个灯塔预示着太空飞行器的位置。激光点在空中快速移动着,10 分钟后就会消失在地平线中。所以这个由中国的多个科学机构研究者组成的团队,正在用望远镜紧紧盯着这道绿光,努力捕捉着其中最重要的东西:这个卫星上由特殊晶体制造的一种微妙的单一红外光子。最终他们过滤掉绿光,锁定了他们的“猎物”——一个过去从未发出射过的量子信号。
这项实验是量子密码这种新技术中的一次关键测试。量子密码就是像光子这样的量子传输安全信息的技术。但是众所周知,脆弱的量子不易进行传递,如果你试图利用光纤来传递它们,超过 150 英里后,信号就会失效,这种性质使得量子密码在全国或者世界范围内传递消息时起不到什么作用。
所以科学家们一直在研究如何利用卫星来进行长距离的量子传送。但是在此之前,还没有人做到如此远的距离。在这项实验中,中国科学家在两个相距 750 英里的地面站点和卫星之间传递单一光子,创造了距离最远的新记录(两站分别是青海德令哈站和云南丽江高美古站,两站距离1203公里)。参与这项工作的巴黎量子计算中心副主管 Eleni Diamanti 说:“这个实验对扩展远距离量子沟通网络来讲拥有里程碑式的意义,这毫无疑问。”
去年 8 月,在戈壁滩的酒泉卫星发射中心,中国发射了造价一亿美元的量子卫星“墨子号”,专门用来进行空间级别的量子实验。该卫星上搭载了一套复杂的激光系统、反射镜面系统和一中特殊的晶体,当激光反射在晶体上时,它会创造出一对处于纠缠态的光子。晶体一次可以制造 6 百万对光子,但是地面上的两个站点每秒只能探测到大约一对光子。陆教授说:“这项任务非常具有挑战性,类似于你在 300 米外观察一根头发。”
陆教授和他的同事们认为,量子密码技术会成为未来一种良好的加密工具,其工作原理是这样的:首先,测量光子的性质,得到一串由 0、1 组成的密钥,接着利用这串密钥加密你的信息并将其发送给特定的接收者。如果黑客想要在传输中窃取这串密钥,根据测不准理论,量子将会在窃取的瞬间改变密钥数字。想象薛定谔的猫,当你没有观察它时,它既生又死,而你一旦观察它,它就会表现出生或者死的一个状态。同样的,偷窃的黑客会瞬间改变构成密钥的光子的状态,所以理论上,在理想状态下,这串密钥绝对不会被窃取(现实中的硬件设备并不完美,探测器在探测连续单一光子时表现不佳,这可能让我们误以为信息被窃取了,黑客也可以通过发射强光来追踪你的探测器)。
中国的量子卫星发射和这项实验是科研人员长期努力的结果。负责这个项目的物理学家,中国科技大学教授潘建伟说,卫星实验的开始可以追溯到2003年,他带领的大约 100 人的团队从设计、建造到调整激光和卫星系统付出了多年的努力。他们最初的实验是在地面上进行的,起初只是在几英里内传输密钥,后来慢慢开始加大距离。
“但是他们在该领域的研究仍然是很快的。”加拿大滑铁卢大学的物理学 Thomas Jennewein 说道(他最近完成了从地面到飞行中的飞机间的量子传输)。几年前,Jennewein 在国际空间站上试图完成相似的实验。他说:“因为各种实验的复杂性、高昂的成本等等,那些项目没有一个可以实现如此远的距离。但是中国团队现在做到了,他们走在了领域的前沿,这非常棒。”
杜克大学的中国科技政策研究专家 Denis Simon 说:“他们之所以行动如此快速,得益于中国政府对该项目的充分重视。因为中国政府领导希望完成这样的实验,所以实验团队无需在通常的官僚制度上浪费时间。”中国政府对量子通信技术抱有极大的兴趣,因为量子安全通信对国家利益大有裨益。他说道:“中国政府想将这种通信技术运用在中国南海的海军战舰上,该技术的应用还有很多。”
同时,其他国家的科学家也在进行类似的实验,但是却被很多官僚制度所束缚。比如 Diamanti 的团队还正在等待欧洲空间局对他们在国际空间站和欧洲几个地面站点间传递量子实验申请的回复。伊利诺伊香槟分校的物理学家 Paul Kwiat 也正在领导美国的团队与 NASA 合作进行相似的实验。
但是还没有一个国家像中国一样对量子通信有着宏伟的计划。陆教授和他的团队正在计划在一个新的更远的卫星上实施同样的实验,将量子通信的距离从城市间扩展得到更远。他们想要在中国和奥地利(那里有一些合作伙伴)之间交换量子密钥。潘建伟曾说过,中国计划在 2030 年打造一个覆盖全球的量子卫星通信网络。陆教授说:“我们是非常幸运的,我们的成功得益于中国政府的快速决策系统,政治和科学的结合可以事半功倍。
在河北兴隆观测站,“墨子号”量子科学实验卫星过境,科研人员正在做实验(合成照片)。
中国科学家用严格的科学实证,
回答了爱因斯坦的“百年之问”!
“鬼魅般的超距作用”——近百年前,爱因斯坦对量子纠缠提出疑问,激励着几代科学家不断研究验证。科学探索的过程,也催生了“量子革命”,孕育出激光、半导体、核能等革命性技术,改变人类文明进程。
在新时期,越来越多中国科学家投身到科学高峰的攀登之旅。
中国科学院联合研究团队,在中科院空间科学战略性先导科技专项的支持下,近日利用“墨子号”量子卫星在国际上率先成功实现了千公里级的星地双向量子纠缠分发,被国际同行称为“处于世界领先地位”。
量子纠缠分发示意图
证实“鬼魅般超距作用”,回答爱因斯坦“百年之问”
“当两个量子发生‘纠缠’,一个变了,另一个也会‘瞬变’,无论它们之间相隔多远。”
——如同“心灵感应”,这就是量子力学理论中神奇的“量子纠缠现象”。近百年前,作为量子力学的开创者之一,爱因斯坦也“百思不得解”。由于当时缺乏检验能力,他认为,或许是量子理论“还不完备”。
德令哈站、阿里站、丽江站跟踪“墨子号”量子科学实验卫星的实景视频
一代一代的学者对这种“鬼魅般的超距作用”进行研究,但由于量子纠缠“太脆弱”,会随着光子在光纤内或地表大气中的传输距离而衰减,以往的实验只停留在百公里距离,量子纠缠仍然存在“漏洞”。
6月16日,中国科学技术大学潘建伟教授及其同事彭承志等组成的研究团队宣布,日前利用“墨子号”量子卫星在国际上率先成功实现了千公里级的星地双向量子纠缠分发,并在此基础上实现了空间尺度下严格满足“爱因斯坦定域性条件”的量子力学非定域性检验。
国际权威学术期刊《科学》以封面论文的形式发表了该成果。
这是什么意思?也就是说,通过“墨子号”卫星,从太空将一对相互“纠缠”的量子“分发”到青海德令哈和云南丽江两个地面站,通过数千对量子的实验检验,发现在两个相距超过1200公里的实验站之间,量子的“纠缠效应”仍然有效。
中国科学家用严格的科学实证,回答了爱因斯坦的“百年之问”。
“墨子号”量子科学实验卫星与阿里量子隐形传态实验平台建立天地链路(2016年12月10日摄)。
进入千公里数量级,是一个质的飞跃。
潘建伟解释,根据科学家构建的理论模型,引力会对量子纠缠产生一种退化效应。不进入千公里级别去设计实验,始终无法验证量子力学的完备性。
2003年开始,潘建伟团队就开始实验长距离量子纠缠。从13公里到100公里,他的团队一步一步走来,始终处于国际引领位置。最终通过太空中的“墨子号”卫星,把科学家一直假想的实验变成了现实。
2016年12月10日,在西藏阿里,科研人员在铁皮屋里合影留念。
实验须“上天”,为现代物理提供全新探索技术
数百年前,伽利略架设起人类历史上第一台天文望远镜,从此开启了天文学的新时代。“墨子号”实验成果也提供了一种全新探索手段,将为物理学的未来打开一扇门。
我们身处的时空是连续的吗?
爱因斯坦、波尔等科学巨擘为我们描述的宇宙哪一个更加真实?
“墨子号”量子科学实验卫星与阿里量子隐形传态实验平台建立天地链路(2016年12月9日摄)。
“从前没有技术能力来做这样的检验。”中科大微尺度物质科学国家实验室研究员彭承志说,比如,让光子走过很远的距离,如果空间是不平滑的,就会产生振动。通过测量光子的偏振,反过来可以验证哪个物理学的理论模型更准确。
不过,这种观测的能量和尺度,不是地面实验室条件可以完成的。在理论物理学界,陆续有学者提出,可以通过天文学上的观测来检验这些物理原理,让现代科学大厦的基座更加坚实。
潘建伟说,“墨子号”的最新实验成果,为开展外太空广义相对论、量子引力等物理学基本原理的实验检验奠定了可靠的技术基础。
除了科学基础研究的重要作用之外,实验结果也有实际应用价值。
丽江量子通信地面站望远镜发射红色信标光,“等待”“墨子号”过境(2016年12月22日摄)。
“可以通过远距离量子纠缠来分发量子秘钥,进而构建量子网络。”潘建伟说,把1个光子送到北京,1个光子送到合肥,二者距离1000多公里,这样就可以在北京、合肥之间建立很好的量子通道,进行量子保密通信。
“墨子号”星地传送距离约1200公里,也不算很远,为什么不在地面上做实验?
潘建伟解释,因为光子通过地面光纤传输时,损耗很大,光纤会“吃掉”部分信号。普通信号削弱了可以放大,但量子纠缠的信号无法放大。
“量子纠缠如果用光纤传送,把目前能想象到的、全世界最好的光纤都集中起来,架设1200公里,测算结果是大概3万年才能传送1个光子。”潘建伟说,通过卫星从外层空间传送光子,损耗能减至万亿分之一,目前1秒钟就能传送1个光子,很快可以累积足够的实验数据。
2016年12月22日,在云南丽江观测站,潘建伟(前排右二)、王建宇(前排左一)、彭承志(后排右一)、印娟(后排右二)等科研人员正在做实验。
迎接“第二次量子革命”,中国挺进最前沿
“墨子号”最新实验成果16日在《科学》上发表时,这家国际权威学术期刊的几位审稿人断言,“毫无疑问将在学术界和广大的社会公众中产生非常巨大影响”。
赞誉很快接踵而至。美国波士顿大学量子技术专家谢尔吉延科评价,这是一个英雄史诗般的实验,中国研究人员的技巧、坚持和对科学的奉献应该得到最高的赞美与承认。
兴隆量子通信地面站望远镜发射出红色信标光(2016年11月25日摄)。
加拿大滑铁卢大学量子技术专家延内魏因说,国际上确实存在量子科研竞赛。这个中国团队已克服了好几个重大技术与科学挑战,清楚地表明了他们在量子通信领域处于世界领先地位。
据了解,类似的实验,欧盟、加拿大、日本都有科学家在呼吁和推进,或因技术积累不够,或因资金支持不够,目前进展缓慢。
“这是我这辈子目前为止做过最好的科学成果。”潘建伟说。
他把量子研究的突飞猛进归功于中国“集中力量办大事”的优势:中科院上海技术物理研究所、微小卫星创新研究院、光电技术研究所、国家天文台、紫金山天文台、国家空间科学中心……
“墨子号”卫星的每一个部件都凝聚了各个科研机构的心血。
“墨子号”量子科学实验卫星掠过阿里量子隐形传态实验平台上空(2016年12月9日摄)。
上海技物所研究员王建宇说,量子纠缠的远距离分发对精度要求极高,就好像从万米高空飞机上扔下一连串硬币,在地面再用存钱罐接住。“现代科学普遍需要大团队合作,中科院把科学和工程领域的精、尖力量结合了起来。”
“不同机构纷纷给我们提供所需的基础元件,让我们的创新想法有了很好的工程基础。我在欧洲、美国、加拿大的同行,都曾有过这样的科学设想,但没有这样的团队全力支持。”潘建伟说。
“墨子号”量子科学实验卫星与德令哈量子通信地面站建立天地链路(2016年12月19日摄)。
以量子卫星的最新实验成果为代表,中国正在挺进量子研究的最前沿。今年5月,潘建伟团队研发的世界上第一台超越早期经典计算机的光量子计算机问世。未来不久,将构建起全球首个天地一体化的实用性广域量子通信网络。
去年年末,英国政府发布的《量子时代的技术机遇》报告中统计,中国在量子科技的论文发表上排在全球第一、专利应用排名第二。在“第二次量子革命”的起步阶段,中国异军突起进入“领跑阵营”。
国家战略的支持,让中国的量子科研工作者更加坚定信心。多位量子科研领军学者认为,“第二次量子革命”将带来巨大的技术和应用前景,也给我国带来了从跟随者、模仿者转变为未来信息技术引领者的重大机遇。
太空之中,“墨子号”仍在不知疲倦地绕地旋转。除了量子纠缠分发之外,高速星地量子密钥分发、地星量子隐形传态等重要科学实验也在紧张顺利地进行中。潘建伟说,预计今年会有更多的科学成果陆续发布。
延伸阅读
2016年8月16日1时40分,我国在酒泉卫星发射中心用长征二号丁运载火箭成功将世界首颗量子科学实验卫星(简称“量子卫星”)发射升空。我国空间科学研究又迈出重要一步。
这颗卫星被起名为“墨子”,以纪念那位生活于2000多年前,崇尚科学的中国古代思想家。他是世界上第一位开展光学实验的科学家。
量子究竟是什么?
量子是构成物质的基本单元,是能量的最基本携带者,不可再分割。比如,光子是光能量的最小单元,不存在“半个光子”,同理,也不存在“半个氢原子”“半个水分子”等等。量子世界中有两个基本原理:
——量子叠加,就是指一个量子系统可以处在不同量子态的叠加态上。著名的“薛定谔的猫”理论曾经形象地表述为“一只猫可以同时既是活的又是死的”。
——量子纠缠,类似孙悟空和他的分身,二者无论距离多远都“心有灵犀”。当两个微观粒子处于纠缠态,不论分离多远,对其中一个粒子的量子态做任何改变,另一个会立刻感受到,并做相应改变。
“墨子”到底能干嘛?
卫星将在两年的设计寿命中完成四大任务:
——星地高速量子密钥分发实验;
——广域量子通信网络实验;
——卫星向相距1200公里的地面站分发纠缠的光子,在更宏大的尺度上测试被爱因斯坦称为“诡异的”量子纠缠现象;
——还计划在“世界屋脊”西藏阿里和卫星之间实现量子隐形传态实验。
研究最诡异的幽灵现象
除了在建立量子通信网络方面的巨大应用价值,这颗世界上首个专门用于量子研究的空间探测器将为理解量子物理的一个最深远和最令人费解的现象——量子纠缠迈出重要一步,将为物理学家提供一个测试量子理论基础以及探索如何融合量子理论与爱因斯坦广义相对论的全新平台。
量子物理世界一个奇异现象是纠缠效应,量子纠缠可以把两个或者更多粒子的命运关联在一起。
在这一奇特关联中的粒子“心心相印”,无论它们是在同一间实验室还是相隔整个星系,当测量其中一个状态时,另一个状态也会即刻发生相应改变。
形象点比喻,这就如同两张相距甚远的纸张,人们在其中一张纸上书写的时候,另一张纸上会立刻显现所书写的信息。
爱因斯坦将其称为“遥远地点之间诡异互动”。但是为什么会有这种现象?这依然是一个深奥的谜。
传送不可破解的密码
到时候,我们再也不用担心自己的网上银行、手机支付、信用卡被盗号……各种各样的泄密事件也不会发生了。
尽管神秘、令人琢磨不透的量子力学还迷雾重重,科学家们却已在利用量子世界的奇异特性开发威力强大的量子计算机和最为安全的量子通信。
量子计算利用量子态的叠加性质,可以实现计算能力的飞跃。太湖之光需要用100年计算的难题,量子计算机或许只需0.01秒。
然而,一些人对于量子计算机的恐惧多于期待。有专家指出,对于现有信息安全系统而言,一旦量子计算机横空出世,它将成为一支“利剑长矛”,可以攻破现在所有的密码。
所幸的是,量子物理同时提供了解决这一问题的办法。
如果量子计算机是“利剑长矛”,那量子密钥就是抵御它的“坚固盾牌”,它提供了一种不可窃听、不可破译的新一代密码技术。
中国科学院院士潘建伟说,量子密钥分发就是在A和B之间共同生成一串只有他们两边知道的随机数,然后用这个随机数来加密。
量子密钥一旦被截获或者被测量,其自身状态就会立刻发生改变,从而一定会被发送方察觉并规避。
由于量子密钥分发是最先实用化的量子信息技术,一般所说的量子通信即是指的量子密钥分发。
来源:新华社
记者:董瑞丰、徐海涛、周琳、金立旺
喻菲、王聪、杨春雪、荣启涵、吴晶晶、白国龙
监制:刘洪
编辑:王朝、陈子夏、陈杉
美媒:中国科研投入2022年将超美国 撼动美霸主地位
参考消息网 6月17日报道 美媒称,美国仍然在科学研究领域居于世界领先地位,至少它在顶级期刊上发表的生物医学研究最多,并且在研发上投入的资金也最多。
据美国趣味科学网站6月15日报道,但一些科学家今天在《临床检查杂志·观察》上称,这种情况可能不会持续很久。
这些研究人员发现,美国在科学界的支配角色正在慢慢削弱,这主要是因为中国近二十年来在科学上投入了大笔资金。研究人员称,2015年,以在六家顶级期刊上发表的新发现总数来看,中国的生物医学研究队伍在前十名中排在第四位。研究人员称,2000年,中国甚至没有进入前十(排在第14位)。
此外,研究人员称,中国2015年在研发上的投入是美国的75%。2000年,中国的投入只有美国的12%。
然而,研究的未来可能是协作。研究人员称,更多来自美国和世界各地的科学家正通过与国际伙伴合作而取得新的发现和进步。
报道称,为更好了解在科学领域居于领先地位的国家,研究人员浏览了2000年到2015年的六家顶级期刊(《美国医学会杂志》、《柳叶刀》、《新英格兰医学杂志》、《细胞》、《自然》和《科学》)和四家中级期刊。研究人员还分析了这一时期每个国家的研发投入。
研究人员发现,近15年来,美国、加拿大、澳大利亚、英国和其他欧洲国家的研究经费停滞不前,而中国的资金大幅增加。
2015年,在较高档次期刊上发表生物医学研究论文数量排在前十名的国家有美国、英国、德国、中国、法国/日本、瑞士、加拿大、荷兰、澳大利亚、韩国/瑞典/意大利。
与此同时,生物医学研发投入最多的15个国家包括美国、中国、日本、德国、法国、英国、加拿大、澳大利亚、意大利、西班牙、荷兰、瑞典、瑞士、韩国和新加坡。
研究人员称,这些分析表明韩国和新加坡的排名也在缓慢上升。
研究人员称,研究结果表明,美国有朝一日可能会失去它在科学和医学研究领域的领导地位。
他们在研究中发现,虽然在中国出生、在美国学习的科学家过去常常留在这里工作,但现在他们会在完成学业后回到中国。
不过,美国仍然拥有一项竞争优势。研究人员称,多亏国会两党的支持,当前的2017年联邦财政预算增加了对美国国家卫生研究院的资金支持。
但研究人员称,当前有关2018年预算的辩论令人担忧,因为有人主张削减资金。与此同时,中国的研发投入预计到2022年将超过美国。(编译/李莎)
我愿意以我全部的科技换取跟苏格拉底待一个下午
每天一杯咖啡吸收宇宙能量!
重构思维方式,
AI+时代,读互联网思想(wanging0123)
联系方式:投稿及内容合作|[email protected]