专栏名称: AI数据派
THU数据派"基于清华,放眼世界",以扎实的理工功底闯荡“数据江湖”。发布全球大数据资讯,定期组织线下活动,分享前沿产业动态。了解清华大数据,敬请关注姐妹号“数据派THU”。
目录
相关文章推荐
英国大家谈  ·  在英国街头,这六类人群要小心 ·  14 小时前  
他化自在天  ·  「任侠」感谢2024年1月第2周10位光荣榜 ... ·  16 小时前  
51好读  ›  专栏  ›  AI数据派

图灵奖获得者Judea Pearl提出AI新方向:由模仿"人脑"转向"因果推理"

AI数据派  · 公众号  ·  · 2018-06-12 08:24

正文

来源:人工智能学家

作者:石冰清

本文共 1200 ,建议阅读 6 分钟

科学家们一直致力于创造一种像人类一样思考的机器,但经过一段时间的探索,这一进程遇到了阻碍,他们基本上已经暂停了模仿“人脑”,转而研究已有发现的应用。



在仍旧孜孜不倦地追求“超智能机器”的 科学家 中,图灵奖获得者Judea Pearl提出了通往智能机器的新路线图。


“人脑”模仿受挫


卡内基梅隆大学计算机科学系主任Andrew Moore在接受Axios采访时表示,尽管现在的AI在可视化、语音和困难游戏方面有令人惊叹的能力,但它仍然“没有魔力”。“我们不再试图复制人脑,我们专注于设计制造(已经发明的东西)”,他说。


Moore的观点与人工智能界日趋强烈的疑问一致——现有的方法真的可以实现所谓”人工智能”吗? 去年九月,AI领域最受尊敬的先驱之一Geoffrey Hinton称,研究者们需要重新开始。


1986年,Geoffrey Hinton与他人合著了一篇论文,这篇论文在30年后成为了引爆人工智能的核心。该论文提出了反向传播理论方法,这是如今人工智能所依赖的主要方法,图像分类、Siri交谈能力的进步都仰仗该方法。然而去年九月,Geoffrey Hinton在一场多伦多举行的AI会议上直言自己提出的突破性方法应该被舍弃。


反向传播算法的核心工作机制是用“标签”或“权重”代表类脑神经层中的图像或声音,权重可以逐层调整,直到该神经网络能够在最少错的情况下执行智能功能。如今Geoffrey Hinton对这个算法深表怀疑,他不认为这是大脑的工作方式,因为“我们显然不需要所有标记的数据。”他说,“我的看法是抛弃一切,重新开始”。


通往“智能机器”的新路线


尽管许多AI科学家停下了对“超智能机器”的追求,但还是有研究者在坚持寻求突破。其中Judea Pearl提出了通往智能机器的新路线——“因果推理”。







请到「今天看啥」查看全文