知乎:晴天
链接:https://zhuanlan.zhihu.com/p/721272352
1. 三个维度
大模型研发力量
旗舰开源模型的形态/模态
-
基础大模型 -> instruct大模型 -> 多模态(VL大模型 -> 类gpt-4o大模型)
时间线
2. 核心观察
学术机构及创业公司式微,科技大厂主导开源大模型。
随着资源需求越来越大,学术机构由于资金不足而逐渐式微,基础大模型的开源主力,从百花齐放收敛到科技大厂,而前沿模型尤以llama及qwen为主。(比如,智源研究院不再发布新的基础大模型,上海AI实验室开源的大模型一直未能突破20B)
科技大厂,除meta(llama)和阿里(qwen)外,虽然谷歌、微软、苹果也加入开源赛道并愈加重视,但仍局限于30B以下的轻量模型。因此,前沿开源大模型,国外仍由llama引领(grok次之),国内由qwen引领(deepseek次之)。
大模型创业公司,除了x.ai和deepseek外,也逐渐回归商业,要么直接退出开源赛道,要么保守发布轻量版模型(比如,百川已经不再发布新的开源大模型,智谱GLM开源模型始终不超过10B,零一万物开源模型不超过34B,gpt/claude/minimax/kimi未开源)。
3. 开源技术路线
仅论通用模型,不含领域模型。
(1)23年上半年
关键词
:微调、汉化
痛点/机会点
:没有足够好用的instruct模型、擅长中文的模型
彼时,llama1尚未发布instruct模型,不少学术机构及科技公司,从事基于llama的微调和汉化并开源(比如斯坦福的alpaca、UC伯克利的vicuna、IDEA研究院的ziya、链家科技的belle),也有部分组织直接攻入基础模型(比如智源研究院的aquila)。
(2)23年下半年
关键词
:基础模型
痛点/机会点
:基础模型还不够好
llama2同时发布基础和instruct模型,此时,微调llama的空间变小但汉化llama依旧很有必要。之后随着baichuan2-13B、qwen-72B的开源,汉化llama的必要性已经微乎其微。因此,开源生态的竞争缩小到基础模型上面,学术机构、创业公司频繁交替开源更强的基础模型(比如aquila2-70B、xverse-65B、deepseek-67B),主流的顶尖模型已推进到70B的门槛。
(3)2024年
关键词
:多模态