大数据文摘受权转载自AI科技评论
作者丨刘洁
编辑丨岑峰
DeepMind闷声干大事,悄悄训练了一个大小只有270M的Transformer模型,居然不需要搜索,就能实现大师级的下棋水平。
这几天的推特因为这篇2月份发布的论文吵得不可开交,DeepMind团队也赶紧放出了更新后的论文版本,开源了有关数据集和代码,对网上的争议做了回应。
![](http://mmbiz.qpic.cn/sz_mmbiz_png/cNFA8C0uVPvpwaQa3elZj71TufURYsibV6DUaEUTAwvIobYfU7RfPVvRh2wtv2qaZlXB3pyCc1KQLtdlqtW8diaA/640?wx_fmt=png&from=appmsg)
最开始,有位网友分享了DeepMind的这项研究,并提出“Transformer也能用于逻辑任务”的观点,没想到却激起了一场关于Transformer能不能推理的争论。
先是顾全全果断转发表示赞同,“这表明Transformer具有推理和规划的能力。”
![](http://mmbiz.qpic.cn/sz_mmbiz_png/cNFA8C0uVPvpwaQa3elZj71TufURYsibVclvOicvT88Rjiblv933NDt7ricsyLnux9QOR0pYogG640ibobgWazGSLpw/640?wx_fmt=png&from=appmsg)
然而,这一观点很快遭到了激烈反驳,争论的火药味十足。
田渊栋直言,短时策略并不等于推理能力。他认为,“Transformer模型的评估基于闪电战模式(每局限时5-10分钟),这更依赖直觉和战术反应,而非传统的深度搜索和规划。”
田渊栋还指出,闪电战下机器人虽然Elo达2713,但未能展示出超越训练数据的能力。“此外,机器人在短时间内的闪电战Elo分数比人类选手要低,这可能说明它的表现更多依赖于模式匹配,而非真正的推理。”
![](http://mmbiz.qpic.cn/sz_mmbiz_png/cNFA8C0uVPvpwaQa3elZj71TufURYsibVbibE9Hs0KrXn5IjJg4lbq2iaumfiaUyjuZ7wfyUyo6vf6llG76icKjBbpA/640?wx_fmt=png&from=appmsg)
很多反对者也指出,论文中明确提到,这种模型的表现仍然高度依赖于训练数据和架构规模。归根结底,它只是在进行统计匹配,而非真正的逻辑推理。
![](http://mmbiz.qpic.cn/sz_mmbiz_png/cNFA8C0uVPvpwaQa3elZj71TufURYsibVdjiaGCrb9coibjH5M4UqGy7lFIEvwHHqF5VvfiaCFa0cRsEO5yrvOyj3g/640?wx_fmt=png&from=appmsg)
也有很多人认为,这实际上只是一种预测。虽然Transformer能够精准地计算和预测下一步行动,这看着像是在推理,但与人类推理并非一回事。
![](http://mmbiz.qpic.cn/sz_mmbiz_png/cNFA8C0uVPvpwaQa3elZj71TufURYsibVLbuRsuAaX8o4ibe6vrYEYRfM7iaDnxRYNj7TkZJ9JodDjo2kicRpicr91g/640?wx_fmt=png&from=appmsg)
![](http://mmbiz.qpic.cn/sz_mmbiz_png/cNFA8C0uVPvpwaQa3elZj71TufURYsibVibe7nhmxuNklfcOSpibiaA6rqMuicPkictFJzeQJL0w3T7qHju08Bn0DRGQ/640?wx_fmt=png&from=appmsg)
顾全全解释道,“推理的核心在于蕴涵(entailment)。”要进行推理,首先需要识别一组基本的命题或原子公式,然后再通过一系列推理规则来推导出结论。
Transformer实现推理的关键在于它是否能够学习推理规则,这些规则是推理的组成部分,但并不能构成完整的“推理”。
以往的研究表明,Transformer 能够学习各种“算法”或规则,例如线性回归(Linear Regression)、k 最近邻(k-Nearest Neighbors)和贝叶斯网络推理中的 Chow-Liu 算法。
这些算法虽然不是严格意义上的逻辑推理规则,但仍然是一种有逻辑的算法规则。顾全全认为,DeepMind这次的研究恰恰展示了Transformer学习推理规则上的潜力。
不过,他也坦言:“尽管大量实证研究表明Transformer可以有效地学习推理规则,但仍然需要在理论上得到严格证明。”
![](http://mmbiz.qpic.cn/sz_mmbiz_png/cNFA8C0uVPvpwaQa3elZj71TufURYsibV02vkeFd71GFYZCyA9Ww69dbZSJkp0BoqiajQyMFuSDhmUUvSbFfzpAg/640?wx_fmt=png&from=appmsg)
换句话说,目前我们只能从实验数据上看到模型的表现,而要真正确认Transformer能不能像人类一样推理,还需要更多理论研究。
DeepMind这篇论文在推特引发的激烈讨论,不仅限于技术本身。
有位网友在深入研究论文细节后认为,这项研究展示了一个重要突破,即将任意概率算法提炼成神经模型的通用方法。
![](http://mmbiz.qpic.cn/sz_mmbiz_png/cNFA8C0uVPvpwaQa3elZj71TufURYsibVefmYibT3OjmsghVkgpL68CYicNBG5eXt8Sq5QSKeIyoBjKjN8ZOTibymA/640?wx_fmt=png&from=appmsg)
他还乐观地表示“我们正处于整个计算机科学从图灵机的起源开始重写的边缘。”
Gary Macus对此持怀疑态度,他在与论文作者交流后指出,论文中的Transformer模型虽然在标准国际象棋上取得了成功,但在更复杂的棋盘变体(如Fischer随机象棋)上表现不佳,也无法推广到更大的棋盘(如8x12)。这说明了模型在泛化能力上的局限性。
他还指出,这类模型的优秀表现往往局限于国际象棋这类封闭的环境,在更开放、更复杂的环境中会面临严峻挑战。
![](http://mmbiz.qpic.cn/sz_mmbiz_png/cNFA8C0uVPvpwaQa3elZj71TufURYsibV7Rb3BmdDfUg6vuEZrGcgsHWODEcDAxge8ajRezZ6ib4AtvIcDS2A0XA/640?wx_fmt=png&from=appmsg)
也有人不赞同这种说法,认为Gary Macus低估了神经网络的繁华能力。虽然模型的适用性不够广,但这种方法却是可以推广的。像MCTS(蒙特卡洛树搜索)这样的算法也可以被蒸馏成模型,这可能也适用于语言处理。
![](http://mmbiz.qpic.cn/sz_mmbiz_png/cNFA8C0uVPvpwaQa3elZj71TufURYsibV6v9Q9Wg7kQY1nBGQLydbMxbgqdLvDwH0RGZtpKaT7Pp8IvsQBXAziaQ/640?wx_fmt=png&from=appmsg)
推特上关于这篇论文的争论愈演愈烈。DeepMind也于10月21日在arxiv上更新了论文,并推出了名为ChessBench的大规模数据集。
ChessBench数据集包含了1000万个国际象棋局面及其走法与价值注释,共计超过150亿个数据点,这些数据全部由最先进的国际象棋引擎Stockfish 16提供。
研究团队还开源了ChessBench数据集、模型权重以及所有训练和评估代码,方便学术界进行下一步研究。
更新的第二版论文里,也提到了“蒸馏”这件事。
研究人员表示,尽管可以通过监督学习将Stockfish的搜索算法的近似版本蒸馏到Transformer中,但完美的蒸馏仍然遥不可及。
这也反映了深度学习领域的一个核心问题:即使模型在某些特定领域(如象棋、围棋)表现出了卓越的性能,但它们仍然依赖于大量计算资源和规则化的训练环境。
像AlphaZero就是依靠强化学习,通过与自己反复对弈,最终超越了传统棋类引擎,一旦应用到更复杂、更少规则约束的环境,也难免暴露出缺乏泛化能力的问题。
DeepMind的这篇论文就提供了一条可行的路。
论文在结尾强调Transformer不应该只是单纯的统计模式识别器,而应该被当作是一种近似通用算法的强大技术。再结合Transformer模型在实验中展示的强泛化能力,也许可以被视作AI模型泛化问题的一种解法。
也有网友发问,之前不是已经有模型实现过了大师级的下棋水平吗,为什么DeepMind还要再做一次?
其实在AI行业里早就有了一个共识:所有的应用都应该用AI大模型重做一遍。
因为AI技术的商业化落地始终是个难题,要对准具体的业务肯定是找现成的应用来得快。另外,用大模型重做已有的应用能够进一步挖掘其商业价值,个性化的用户体验能够增加用户粘性抢占更多的市场份额。
在市场的驱动下,微软和谷歌这样的大企业早就付诸行动并且颇有成效了。
微软往Office办公三件套引入了Copilot,实现了从文本生成到流程自动化的全面升级。像普通用户就可以通过提供文字提示或是Word文档让Copilot生成幻灯片,企业用户还可以直接生成一些简单的代码应用。
Google Workspace套件里集成的生成式AI也很实用,用户可以利用智能助手在Google Docs和Gmail中生成邮件、摘要等内容,减少重复劳动大大提高了工作效率。
而且这次研究的重要性不仅仅在于棋类AI的迭代,更在于它为AI推理和学习的未来提供了新方向。
回顾以往的棋类AI研究,博弈树一直是核心工具。
博弈树将每一个棋局状态表示为节点,每下一步棋则从一个节点移动到对应的子节点,通过穷举所有可能的步骤,构建出一个庞大的树状结构。
然而,棋类游戏的复杂性让这种全量搜索变得几乎不可行。
为了解决这个问题,约翰·麦卡锡(John McCarthy)提出了著名的α-β剪枝算法。
这种算法的核心在于,在绘制博弈树的同时进行计算评估,一旦某一分支的结果无法优于已有的最佳结果,就会立即“剪枝”,跳过这个分支的计算。这种方式有效减少了无效计算,大大提升了搜索效率。
1997年,IBM的Deep Blue利用α-β剪枝算法,并结合数百万场棋局的数据支持,成功实现了深度计算。最终,Deep Blue击败了国际象棋世界冠军加里·卡斯帕罗夫。
这是AI第一次在公开比赛中战胜顶级人类棋手,也是博弈树算法与启发式规则结合的巅峰。
2017年,DeepMind发布了AlphaZero,进一步突破了传统的博弈树模型。
与以往AI依赖人类知识库和启发式规则不同,AlphaZero完全抛弃了这些外部支持,仅通过自我对弈和通用强化学习算法,就在短时间内掌握了国际象棋、将棋和围棋的玩法。
这项突破性研究展示了AI自我优化的潜力:无需借助外部知识库,AI也能达到卓越水平。
这一次,DeepMind在棋类AI的探索上更进一步。与AlphaZero相比,Transformer模型不仅抛弃了人类知识库和启发式规则,甚至不再使用任何搜索算法,而是通过监督学习直接从包含1000万场国际象棋比赛的数据集中学习策略。
DeepMind训练了三种规模的Transformer模型,分别为9M、136M和270M参数,并根据预测目标(动作值、状态值或行为克隆)构建了一个预测器。动作值预测器用于生成策略,评估所有合法动作的预测值并选择期望动作值最大的动作。
实验结果显示,最大的270M参数模型在Lichess闪电战中达到了2895 Elo的分数,表明它已经具备了大师级的国际象棋策略。
![](http://mmbiz.qpic.cn/sz_mmbiz_png/cNFA8C0uVPvpwaQa3elZj71TufURYsibVtyUScHHcamHwF3Y0IvxgDsHcNS5ylA9XUqvsVwdh6vVTAM6P7hwpOg/640?wx_fmt=png&from=appmsg)
(动作价值模型与Stockfish 16、Leela Chess Zero的变体、AlphaZero(有无蒙特卡洛树搜索)以及GPT-3.5-turbo-instruct的比较)
相比AlphaZero依赖深度搜索和自我对弈,这个模型的成功之处在于无需借助任何搜索算法,仅仅基于棋盘状态的学习也能达到大师级别的棋艺。并且该模型大幅降低了计算需求——甚至在部分任务中以八倍更少的浮点计算量取得与AlphaZero相当的成绩。
这不仅是技术上的突破,更暗示了Transformer模型在泛化和学习推理规则方面的巨大潜力。
DeepMind这次的研究对LLM尤其是小参数模型来说,同样具有里程碑式的意义。
相信很多人都发现了,现在LLM的研究已经到了一个交叉点。
一部分研究者坚信“大即是好”,致力于开发性能强大的巨型模型;另一部分则选择“小而美”的方向,专注于小参数模型的优化和应用。
像Meta和苹果就是小模型赛道的坚定拥护者。
Meta推出的MobileLLM系列,将模型规模缩小至1B以下,并推出了125M和350M两个版本。
而一直专注于闭源开发的苹果,也在开源领域有所突破,发布了一系列开源模型OpenELM,参数规模集中在270M到3B之间。
270M这个数字是不是很熟悉?正是DeepMind这次使用的Transformer模型参数量。这两家公司都不约而同选择270M,绝非偶然。
与动辄数百亿参数的巨型模型相比,苹果的3B模型在LLM领域已算是“小型”。
然而,对于手机等移动设备而言,3B的模型依然太大。因此,270M成为绝佳选择——既能在移动设备上顺畅运行,又兼顾了模型性能。
类似的趋势也出现在大型模型领域。
很多主流大模型的参数设定为7B、13B或65B,其中7B尤其常见。原因在于7B的模型可以在单卡上部署,大大降低了应用的成本和门槛。
这也表明,无论是大模型还是小模型,研究的核心都在于如何实现商业落地。
行业趋势表明,轻量化正逐渐成为市场主流。相比巨型模型,小模型的优势十分明显:
- 对大部分企业而言,小模型的能力已经足以满足业务需求。
截至2021年,全球移动设备用户数量已达86亿,超过了地球总人口。如何满足如此庞大的移动用户需求,已经成为各大企业竞争的焦点。
比如,苹果的最新语音助手就内置了270M模型,支持离线语音识别和本地响应。谷歌的TinySpeech也为了能在移动设备上实现更加快速准确的语音识别功能,缩小了参数规模。