文章标题是《Toward Minimal Residual Disease-Directed Therapy in Melanoma》,链接:https://pubmed.ncbi.nlm.nih.gov/30017245/
使用了SCENIC转录因子分析的结果
制作了如下所示的3张图
:
(A) t-SNE shows cells colored by state identity(SCENIC approach). The identities are inferred bythe binary activities of the TF regulons. Cell identitiesinferred by SCENIC are largely overlappingwith the SCDE approach
(B) SCENIC analysis predicts TFs such as SOX10,MEF2C, TFAP2B, and RXRG as central hubs governing the NCSC state. TF regulon activitieswere quantified using AUCell.
(D) Gene regulatory network analysis using SCENIC identifies critical nodes driving the NDTC state.
每个亚群
都有各自富集到的转录因子,包括:pigmentation, NCSC, “invasive,” “proliferative” and SMC states ,都可以根据SCENIC转录因子分析的结果来绘制经典三张图,数据集在GSE116237,总共也就是 865个细胞:
其它亚群的SCENIC转录因子分析的经典三张图
2020年10月NC的膀胱癌免疫微环境
文章标题是;《Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma》,链接是:https://www.nature.com/articles/s41467-020-18916-5
首先是:图 a Heatmap of the area under the curve (AUC) scores of TF motifs estimated per cell by SCENIC. Shown are top five differentially activated motifs in iCAFs and mCAFs, respectively
也就是说,研究者定位到了两个细胞亚群 iCAFs and mCAFs,然后针对性的对这两个细胞亚群进行SCENIC分析,取那些在两个细胞亚群有统计学差异的TF的全部细胞的AUC值进行热图可视化,如下:
文章标题是;《
Immune suppressive landscape in the human esophageal squamous cell carcinoma microenvironment
》,链接是
https://www.nature.com/articles/s41467-020-20019-0
同样的,取细胞亚群有统计学差异的TF的全部细胞的AUC值进行热图可视化:
文中图例是:j Heat-map of the t values of AUC scores of expression regulation by transcription factors of the indicated clusters, as estimated using SCENIC