专栏名称: 深度学习自然语言处理
一个从大三就接触NLP的小小NLPer,本公众号每天记录自己的一点一滴,每篇文章最后也有托福单词等新知识,学技术同时,也一点一滴积累额外的知识。期待与你在知识的殿堂与你相遇!
目录
相关文章推荐
新疆949交通广播  ·  正月为什么不能理发?答案是...... ·  昨天  
兵团零距离  ·  新疆公布10起安全生产举报案例 ... ·  昨天  
新疆949交通广播  ·  国家发改委重磅发文!涉及乌鲁木齐 ·  2 天前  
新疆949交通广播  ·  取消限制!新疆本月起实行→ ·  3 天前  
新疆生态环境  ·  正月初八,开工大吉! ·  3 天前  
新疆生态环境  ·  正月初八,开工大吉! ·  3 天前  
51好读  ›  专栏  ›  深度学习自然语言处理

综述OS Agents: MLLM智能体实现计算设备通用控制 | 浙大&OPPO&零一万物等

深度学习自然语言处理  · 公众号  ·  · 2025-01-16 11:45

正文

非常高兴有机会分享我们的最新综述 OS Agents: A Survey on MLLM-based Agents for General Computing Devices Use 。最近,由Anthropic推出的Computer Use利用基于多模态大模型的智能体操控电脑完成各种任务,让人们为之兴奋,也带动了学术界与工业界在OS Agents相关领域的研究与发展。浙江大学联合OPPO、零一万物等十个机构共同梳理了OS Agents的发展现状以及未来可能,并形成了一篇综述,旨在推动该领域的持续发展。如下是我们对论文的中文解读,更多细节欢迎访问我们的论文以及开源仓库!

论文 :https://os-agent-survey.github.io/paper.pdf
仓库 :https://github.com/OS-Agent-Survey/OS-Agent-Survey
主页 :https://os-agent-survey.github.io/
编辑 :「深度学习自然语言处理」 公众号
OS Agents团队投稿

1 引言

《钢铁侠》中的贾维斯(J.A.R.V.I.S.)能够帮助托尼·斯塔克控制各种系统并自动完成任务,构建一个像这样的超级AI助手一直是人类长期以来的梦想。我们把这一类实体称为OS Agents,它们能够通过操作系统(OS)提供的环境和接口(如图形用户界面,GUI)在诸如电脑或者手机等计算设备上自动化的完成各类任务。OS Agents有巨大的潜力改善全球数十亿用户的生活,想象一个世界:在线购物、预订差旅等日常活动都可以由这些智能体无缝完成,这将大幅提高人们的生活效率和生产力。过去,诸如Siri[1]、Cortana[2]和Google Assistant[3]等AI助手,已经展示了这一潜力。然而,由于模型能力在过去较为有限,导致这些产品只能完成有限的任务。幸运的是,随着多模态大语言模型的不断发展,如Gemini[4] 、GPT[5] 、Grok[6] 、Yi[7] 和Claude[8]系列模型(排名根据2024年12月22日更新的 Chatbot Arena LLM Leaderboard[9]),这一领域迎来了新的可能性。(M)LLMs展现出令人瞩目的能力,使得OS Agents能够更好地理解复杂任务并在计算设备上执行。基础模型公司和手机厂商近期在这一领域动作频频,例如最近由Anthropic推出的Computer Use[10]、由苹果公司推出的Apple Intelligence[11]、由智谱AI推出的AutoGLM[12]和由Google DeepMind推出的Project Mariner [13]。例如,Computer Use利用Claude[14]与用户的计算机直接互动,旨在实现无缝的任务自动化。与此同时,学术界已经提出了各种方法来构建基于(M)LLM的OS Agents。例如,OS-Atlas[15]提出一种 GUI 基础模型,通过跨多个平台综合 GUI 操作数据,大幅改进了模型对 GUI 的操作能力,提升OOD任务的表现。而OS-Copilot[16]则是一种OS Agents框架,能够使智能体在少监督情况下实现广泛的计算机任务自动化,并展示了其在多种应用中的泛化能力和自我改进能力。

OS Agents 的部分代表性商业产品与学术研究

本文对OS Agents进行了全面的综述。首先阐明了OS Agents的基础,探讨了其关键要素,包括环境、观察空间和动作空间,并概述了理解、规划和执行操作等核心能力。接着,我们审视了构建OS Agents的方法,重点关注OS Agents领域特定的基础模型和智能体框架的开发。随后,本文详细回顾了评估协议和基准测试,展示了OS Agents在多种任务中的评估方式。最后,我们讨论了当前的挑战并指出未来研究的潜在方向,包括安全与隐私、个性化与自我进化。本文旨在梳理OS Agents研究的现状,为学术研究和工业开发提供帮助。为了进一步推动该领域的创新,我们维护了一个开源的GitHub仓库,包含250+有关OS Agents的论文以及其他相关资源,并且仍在持续更新中,欢迎大家关注。

OS Agents基础:关键要素和核心能力

2 OS Agents基础

2.1 关键要素 (Key Component)

要实现 OS Agents 对计算设备的通用控制,需要通过与操作系统提供的环境、输入和输出接口进行交互来完成目标。为满足这种交互需求,现有的 OS Agents 依赖三个关键要素:

  • 环境(Environment) :智能体操作的系统或平台,例如电脑、手机和浏览器。环境是智能体完成任务的舞台,支持从简单的信息检索到复杂的多步骤操作。
  • 观察空间(Observation Space) :智能体可获取的所有信息范围。这些信息诸如屏幕截图、文本描述或GUI界面结构,是智能体理解环境和任务的基础。例如,网页的 HTML 代码或手机的屏幕截图。
  • 动作空间(Action Space) :智能体与环境交互的动作集合。它定义了可执行的操作,如点击、输入文本、导航操作甚至调用外部工具。这使得智能体能够自动化完成任务并优化工作流。

2.2 核心能力 (Capability)

在OS Agents的这些关键要素后,如何与操作系统正确、有效的交互,这就需要考验OS Agents自身各方面的能力。我们将OS Agents必须掌握的核心能力总结为如下三点:

  • 理解(Understanding) :OS Agents 首先需要理解复杂的操作环境。无论是 HTML 代码、屏幕截图,还是屏幕界面中密集的图标和文本信息,智能体都需要通过理解能力提取关键内容,构建对任务和环境的全面认知。这种理解能力是处理信息检索等任务的前提。
  • 规划(Planning) :在任务执行中,OS Agents 的规划能力至关重要。规划能力要求OS Agents将复杂任务拆解为多个子任务,并制定操作序列来实现目标。同时,它们最好还要能够据环境变化动态调整计划,以适应复杂的操作系统环境,例如动态网页和实时更新的用户屏幕界面。
  • 操作(Grounding) :OS Agents最终需要将规划转化为具体的、可执行的操作,例如点击按钮、输入文本或调用 API。这种将规划“落地”的能力使得它们能够在真实环境中高效完成任务,并实现从文字描述到操作执行的精准转换。

3 OS Agents的构建

3.1 基础模型 (Foundation Model)

要构建能够高效执行任务的 OS Agents ,其核心在于开发适配的基础模型。这些模型不仅需要理解复杂的屏幕界面,还要在多模态场景下执行任务。我们在这部分对基础模型的架构与训练策略做了详细归纳与总结:

OS Agents基础模型:架构、预训练、监督微调和强化学习
  • 架构(Architecture) :我们将主要的模型架构分为四个类别:1、Existing LLMs:直接采用开源的大语言模型架构,将结构化的屏幕界面信息以文本形式输入给LLMs,从而使得模型可以感知环境;2、Existing MLLMs:直接采用开源的多模态大语言模型架构,整合文本和视觉处理能力,提升对GUI的理解能力,减少文本化视觉信息而造成的特征损失;3、 Concatenated MLLMs:由LLM与视觉编码器桥接而成,灵活性更高,可以根据任务需求选择不同的语言模型和视觉模型进行组合;4、Modified MLLMs:对现有 MLLM 架构进行优化调整,以解决特定场景的挑战,如:添加额外模块(高分辨率视觉编码器或图像分割模块等),以更细致地感知和理解屏幕界面细节。
  • 预训练(Pre-training) :预训练为模型构建打下基础,通过海量数据提升对屏幕界面的理解能力。数据源包括公共数据集、合成数据集;预训练任务覆盖屏幕定位(Screen Grounding)、屏幕理解(Screen Understanding)与光学字符识别(OCR)等。
  • 监督微调(Supervised Fine-tuning) :监督微调让模型更贴合 GUI 场景,是提升OS Agents规划能力和执行能力的重要手段。例如,通过记录任务执行轨迹生成训练数据,或利用 HTML 渲染屏幕界面细节,提升模型对不同 GUI 的泛化能力。
  • 强化学习(Reinforcement Learning) :现阶段的强化学习实现了用(M)LLMs作为特征提取到(M)LLM-as-Agent的范式转变,帮助了OS Agents在动态环境中交互,根据奖励反馈,不断优化决策。这种方法不仅提升了智能体的对齐程度,还为视觉和多模态智能体提供了更强的泛化能力与任务适配性。

我们将近期的OS Agents基础模型相关论文总结如下:

OS Agents基础模型近期研究工作总结

3.2 智能体框架 (Agent Framework)

OS Agents 除了需要强大的基础模型,还需要搭配上Agent框架来增强感知、规划、记忆和行动能力。这些模块协同工作,使 OS Agents 能够高效应对复杂的任务和环境。以下是我们对OS Agents 框架的四大关键模块的总结归纳:

OS Agents框架:感知、规划、记忆和行动
  • 感知(Perception) :感知作为OS Agents 的“眼睛”,通过输入的多模态数据(如屏幕截图、HTML 文档)观察环境。我们将感知细分为:1、文本感知:将操作系统的状态转化为结构化文本描述,如 DOM 树或 HTML 文件;2、屏幕界面感知:使用视觉编码器对屏幕界面截图进行理解,通过视觉定位(如按钮、菜单)和语义连接(如 HTML 标记)精准识别关键元素。
  • 规划(Planning) :规划作为OS Agents 的“大脑”,负责制定任务的执行策略,可以分为:1、全局规划:一次生成完整计划并执行;2、迭代规划:随着环境变化动态调整计划,使智能体能够适应实时更新的屏幕界面和任务需求。
  • 记忆(Memory) :OS Agents框架的“记忆”部分可以帮助存储任务数据、操作历史和环境状态。记忆分为三个类型:1、内部记忆(Internal Memory):存储操作历史、屏幕截图、状态数据和动态环境信息,支持任务执行的上下文理解和轨迹优化。例如,借助截图解析屏幕界面布局或根据历史操作生成决策;2、外部记忆(External Memory):提供长期知识支持,例如通过调用外部工具(如 API)或知识库获取领域背景知识,辅助复杂任务的决策;3、特定记忆(Specific Memory):聚焦于特定任务的知识和用户需求,例如存储子任务分解方法、用户偏好或屏幕界面交互功能,提供高度针对性的操作支持。此外,我们还总结了多种记忆优化策略。
  • 行动(Action) :我们将OS Agents 的行动范围定义为动作空间,这包含操作系统交互的方式,我们将其细分为三个类别:1、输入操作:输入是 OS Agents 与数字屏幕界面交互的基础,主要包括鼠标操作、触控操作和键盘操作;2、导航操作:使 OS Agents 能够探索和移动于目标平台,获取执行任务所需的信息;3、扩展操作突破了传统屏幕界面交互的限制,为智能体提供更灵活的任务执行能力,例如:代码执行与API 调用。

同时,我们总结了近期有关OS Agents 框架的论文:

OS Agents框架近期研究工作总结

4 OS Agents的评估

在 OS Agents 的发展中,科学的评估起到了关键作用,帮助开发者衡量智能体在各种场景中的性能。如下表格包含我们对近期有关OS Agents评估基准论文的总结:

OS Agents Benchmark近期研究工作总结

4.1 评估协议 (Evaluation Protocol)

OS Agents评估的核心可总结为两个关键问题:评估过程应如何进行与需要对哪些方面进行评估。下面我们将围绕这两个问题,阐述OS Agents的评估原则和指标。

  • 评估原则(Evaluation Principle) :OS Agents 的评估结合了多维度的技术方法,提供对其能力与局限性的全面洞察,主要分为两种类型:1、客观评估(Objective Evaluation):通过标准化的数值指标,评估智能体在特定任务中的性能。例如,操作的准确性、任务的成功率以及语义匹配的精准度。这样的评估方法能快速且标准化地衡量智能体的性能;2、主观评估(Subjective Evaluation):基于人类用户的主观感受,评估智能体的输出质量,包括其相关性、自然性、连贯性和整体效果。越来越多的研究也利用(M)LLM-as-Judge来进行评估,从而提高效率和一致性。
  • 评估指标(Evaluation Metric) :评估指标聚焦于 OS Agents 的理解、规划和操作能力,衡量其在不同任务中的表现。主要包括以下两个方面:1、步骤级指标:评估智能体在每一步操作中的准确性,如任务执行中动作的语义匹配程度、操作准确性等;2、任务级指标:聚焦于整个任务完成情况,包括任务的成功率和完成任务的效率。

4.2 评估基准 (Evaluation Benchmark)

为了全面评估 OS Agents 的性能,研究者开发了多种评估基准,涵盖不同平台、环境设置和任务类别。这些基准测试为衡量智能体的跨平台适应性、动态任务执行能力提供了科学依据。

  • 评估平台(Evaluation Platform) :评估平台构建了集成的评估环境,不同平台具有独特的挑战和评估重点,我们将其主要分为三类:移动平台(Mobile)、桌面平台(Desktop)与网页平台(Web)。
  • 基准设置(Benchmark Setting) :该部分将 OS Agents 的评估环境分为两大类:静态(Static)环境和交互式(Interactive)环境,并进一步将交互式环境细分为模拟(Simulated)环境和真实世界(Real-World)环境。静态环境适用于基础任务的离线评估,而交互式环境(尤其是真实世界环境)更能全面测试OS Agents在复杂动态场景中的实际能力。真实世界环境强调泛化能力和动态适应性,是未来评估的重要方向。
  • 任务(Task) :为了全面评估OS Agents的能力,当前的基准测试整合了各种专业化任务,涵盖从系统级任务(如安装和卸载应用程序)到日常应用任务(如发送电子邮件和在线购物)。主要可以分为以下三类:1、GUI 定位(GUI Grounding):评估OS Agents将指令转换为屏幕界面操作的能力,即如何在操作系统中与指定的可操作元素交互;2、信息处理(Information Processing):评估OS Agents高效处理和总结信息的能力,尤其在动态和复杂环境中,从大量数据中提取有用信息;3、智能体任务(Agentic Tasks):评估OS Agents的核心能力,如规划和执行复杂任务的能力。这类任务为智能体提供目标或指令,要求其在没有显式指导的情况下完成任务。






请到「今天看啥」查看全文


推荐文章
新疆949交通广播  ·  正月为什么不能理发?答案是......
昨天
新疆949交通广播  ·  国家发改委重磅发文!涉及乌鲁木齐
2 天前
新疆949交通广播  ·  取消限制!新疆本月起实行→
3 天前
新疆生态环境  ·  正月初八,开工大吉!
3 天前
新疆生态环境  ·  正月初八,开工大吉!
3 天前
香港凤凰周刊  ·  人生获得自由,究竟意味着什么?
7 年前
黎贝卡的异想世界  ·  推广|| 刘若英:我依然保有孤独的权利
7 年前
教你养车  ·  车内污染给我们带来了哪些危害?
7 年前