专栏名称: 环球科学
《科学美国人》独家授权中文版—《环球科学》杂志—www.huanqiukexue.com
目录
相关文章推荐
科普中国  ·  达到国际先进水平!这一关键系统验收 ·  昨天  
科普中国  ·  斗牛表演时,斗牛其实对红布并不感兴趣 ·  昨天  
宇宙解码  ·  为什么在沙漠中迷路的人饿死也走不出去? ·  3 天前  
51好读  ›  专栏  ›  环球科学

人类活得久,要感谢祖先不会吃熟肉?意想不到的机制令我们长寿,也让我们在晚年疾病缠身

环球科学  · 公众号  · 科学  · 2018-05-12 17:36

正文


为什么人类比其他灵长类活得更长?传统观点认为,这是源于现代医学的发展、充足的食物以及先进的卫生系统。但新研究表明,虽然上述因素在最近200年内,延长了人类的寿命,但人类寿命比其他灵长类长这一倾向,早在这之前就存在了。当人类的祖先开始更多地摄入肉食后,他们就渐渐进化出了对抗肉食中病菌的免疫机制。这些免疫机制延长了人类的寿命,却也让人类付出了昂贵的代价,使人类在晚年更容易患上一些老年疾病。


撰文 | 希瑟·普林格尔(Heather Pringle)

翻译 | 郑奕宸


和其他灵长类动物相比,我们人类异常长寿。比如,和我们关系最近的现存物种黑猩猩,出生时的平均预期寿命只有大约13岁;而美国2009年出生的婴儿的预期寿命则达到78.5岁。 为什么人类的寿命远长于其他灵长类?


很多研究人员都将我们的超长寿命归功于疫苗、抗生素的发明,以及高效的城市卫生系统和全年不间断供应的、新鲜且营养丰富的蔬菜水果。大量人口统计学证据也表明,过去200年间,这些因素大大延长了人类的寿命。但 美国南加利福尼亚大学的生物学家凯莱布·芬奇(Caleb Finch) 认为,以上因素虽然重要,却只是人类长寿之谜中的一环而已。他从体质人类学、灵长动物学、遗传学以及医学等诸多学科中收集数据,提出了一项富有争议的新假说: 人类衰老减缓、寿命延长的趋势早就开始了,因为我们的祖先进化出了一套能对抗古代环境中各种病原体和有害物质的防御系统。


如果芬奇是正确的,那么未来关于传染病、宿主防御、老年人慢性疾病之间复杂关系的研究,很可能会颠覆科学家对衰老的认识,并找到应对老龄化的办法。



寿命的进化


一项针对现代狩猎采集民族的研究显示,现代医学和丰富的食品供应并非人类长寿的唯一原因。1985年,美国加利福尼亚大学洛杉矶分校的生物人类学家尼古拉斯·布勒顿-琼斯(Nicholas Blurton-Jones)和助手驱车前往坦桑尼亚的 哈扎人 (Hadza)与世隔绝的营地。哈扎人是一个以狩猎、采集为生的民族,和祖先一样,他们狩猎狒狒和角马,采食富含淀粉的块根,雨季时则从非洲蜜蜂的巢穴中采集蜂蜜。


现代的狩猎采集民族,例如坦桑尼亚的哈扎人,和黑猩猩一样,居住在充满寄生虫和病菌的自然环境里,但他们活得远比黑猩猩要长,这可能是因为人类进化出了适应于肉食的基因。


两位研究人员遍访当地每一个帐篷,收集每个家庭成员的姓名、年龄等基础人口统计学数据。在接下来的15年间,他们又6次更新这些统计信息,记下了所有死亡人口的姓名和死因。另外,布勒顿-琼斯还从另外两名研究人员那里获得了一些关于哈扎人更早期的统计数据。


和原始人类、黑猩猩一样,哈扎人生活在一个充满病菌和寄生虫的自然环境中。他们没有自来水、下水道系统,在离帐篷20~40米外的一个区域排便,也不懂医疗。但布勒顿-琼斯发现, 哈扎人的寿命远比黑猩猩要长。


哈扎人出生时的预期寿命是32.7岁,如果他们能活到成年,则平均还能再活40年,比成年黑猩猩长三倍。有一些哈扎人的长老甚至能活到80多岁。显然, 他们较长的寿命,与医学和技术的进步几乎没有关系。


哈扎人并非个例。2007年,美国加利福尼亚大学圣巴巴拉分校的迈克尔· 格尔温(Michael Gurven)和新墨西哥大学的希拉德· 卡普兰(Hillard Kaplan),分析了有人口统计资料可供研究的全部5个现代狩猎采集部落。数据显示,感染占全部死亡原因的72%,并且这些部落的死亡率曲线呈“J”形——儿童死亡率达30%,青年死亡率低,40岁以后呈指数上升。接下来,格尔温和卡普兰将这些曲线与野生及圈养黑猩猩的数据进行比较:与狩猎采集部落的人类相比,黑猩猩至少早10年进入死亡率快速上升的老年期。格尔温和卡普兰在论文中总结道,“显然,黑猩猩比人类衰老得快,并且更早死去,就算在受保护的圈养环境里也一样”。


人类的寿命到底是在什么时候开始延长的呢?


为了获得线索,美国中央密歇根大学的人类学家雷切尔·卡斯帕里(Rachel Caspari)和加利福尼亚大学河滨分校的李尚禧(音译,Sang-Hee Lee)研究了768具古人类遗骸,这些遗骸分属4种古人类群体,时间跨度达数百万年。通过检测牙齿磨损(由于咀嚼导致磨损的速度是恒定的,故可用于推定年龄),他们估算出了,在每种古人类群体中,15岁左右的青年和30岁左右的中年(在那时,这个年龄足够成为祖父母了)的人数比例。


他们的研究表明, 仅在漫长的史前时代的后期,活过30岁才开始变得普遍。 440万年前出现在非洲的南方古猿,大多数都在30岁前死去了。另外,30岁左右与15岁左右的数量比只有0.12。与此相对,1万到4.4万年前生活在欧洲的智人常常活到30岁以上,30岁左右与15岁左右个体的比值达到了2.08。


但是,计算早期智人种群的平均寿命相当困难:在那个时代,诸如出生、死亡记录的人口统计数据,基本不存在。芬奇和同事艾琳· 克里明斯 (Eileen Crimmins)能够分析的最早的完整统计数据,来自1751年的瑞典。在那之后数十年,现代医学和卫生系统才开始出现。


研究表明,这些18世纪中叶的瑞典人的平均寿命约为35岁。但如果逃过细菌感染和天花等传染病的威胁,顺利地活过儿童期并活到20岁后,则有望再活40年。


这些发现令芬奇十分不解。这些18世纪的瑞典人定居在人口密集的大型村庄、城镇和城市中,面临的健康威胁,比小群迁徙性黑猩猩面临的还要严重。为什么这些瑞典人反倒活得更久呢?答案似乎来自早期人类祖先富含肉类的食谱,以及一些经过进化,可以保护他们免受各类致病物质威胁的基因。



长寿基因


除去睡觉,黑猩猩大部分时间都用在采集美味的无花果和其他果子。为了寻找这些富含果糖的食物,它们需要穿过大片地域,很少在一个地方连续待上两天。它们擅长捕猎红疣猴等小型哺乳动物,但不会主动搜寻这些猎物。它们吃肉也不多。在坦桑尼亚研究野生黑猩猩的灵长动物学家计算出,肉类在黑猩猩一年的食谱中所占比例不到5%,而在乌干达的一项研究数据中,动物脂肪只占黑猩猩食物总干重的2.5%。


芬奇说,最早的人科成员的食谱很可能也是以植物为主。 但在250万~340万年前的某一时期,我们的祖先开始摄取新的动物蛋白类食物 ,这非常重要。埃塞俄比亚的几处遗址显示,当时的人已经开始使用简单石器,屠宰羚羊等大型有蹄类动物,他们砸碎骨头取食富含脂肪的骨髓;将肉从骨头上剥离下来,并在腿骨和肋骨上留下了切痕。大约180万年前,人类开始主动捕猎大型野兽,并将整具动物尸体带回营地。


富含卡路里和蛋白质的新食物,很可能促进了人类大脑的发育,但也 增加了被食物中病原体感染的机会 芬奇推测, 这种风险促使我们的祖先产生了适应机制,以便能在病原体的侵袭下活下来,并活得更长。


随着吃肉越来越多,我们的祖先接触到病菌的机会也越来越多。早期人类食用死亡动物的腐尸,并食用生肉和内脏,这增加了他们摄入传染性病菌的可能性。


另外,当人们捕猎凶猛的大型动物时,很可能会受伤和骨折,而这些伤口会引发要命的感染。


大约100万年前出现的熟食,也带来了危险——每天接触木头燃烧产生的烟雾,会让人吸入大量有毒物质和烟尘颗粒。另外,肉类经过烧烤,味道更好,也更容易消化,但同时也会产生被称为 “晚期糖基化终产物” (advanced glycation end products)的化学物质,这会导致糖尿病等严重疾病。


此后,大约1.15万年前,我们的祖先进入了农牧业时代,这导致了新的危险——每天接触养殖的牛、羊、猪、鸡等动物,增加了人类从动物那里感染细菌或病毒的风险。另外,当人类永久定居在一个村庄后,人类和家畜产生的污水会污染当地水源,使得致病细菌大量繁殖。


就算这样,面对如此多健康风险,1751年的瑞典人仍然比黑猩猩活得长。


为了找到人类长寿的原因,芬奇开始研究关于人类和黑猩猩基因组的学术文献。其他人此前发表的研究表明,人类和黑猩猩的基因组大约99%是相同的。但当时在西班牙费利佩王子研究中心的进化生物学家埃尔南·多帕索(Hernán Dopazo)和同事注意到, 在人类独有的1%的基因中,有特别多的基因经历了正向选择 (指物种受外界环境的影响,进行基因的自我调节和转变,淘汰不适应环境的基因,产生可有效适应环境的基因), 并在宿主防御和免疫(特别是一个叫做炎症反应的部分)中起到重要作用。 正向选择使那些对人类生存和繁殖有利的基因,在种群中越来越普遍,并在DNA序列中留下一个独特的“印记”。


多帕索的发现让芬奇的猜想有了新的依据。他想, 也许是自然选择让人类拥有了一个更好的免疫系统,来抵抗由于肉食增加所带来的微生物等各种健康威胁,因而延长了我们的寿命。


在与试图侵犯我们的细菌、病毒和其他微生物对抗的战争中,人类的宿主防御系统拥有两大“武器”:先天性免疫和适应性免疫。先天性免疫是第一道防线。它在受到攻击或者受到伤害后立刻反应,试图消灭病菌并修复受损组织,对于任何“入侵者”都采取基本一样的对策。而适应性免疫则相反,它启动比较慢,针对不同病菌采取不同的应对方式。通过这种方法,它可以建立一种免疫记忆,为我们提供对抗某种“入侵者”的终生保护。


炎症反应是先天性免疫系统的一部分。当组织受到微生物或毒素侵袭,或遭遇创伤时,就会出现炎症反应。芬奇指出,医生们早就注意到了炎症反应。大约2 000年前,古罗马的奥鲁斯·科尼利厄斯· 塞尔苏斯 [Aulus Cornelius Celsus,百科全书 《论医学》 (De Medicina)的编撰者]就在书中描述了炎症的4种重要标志:发热、发红、肿胀和疼痛。


芬奇解释说,发热来自我们细胞中的“能量工厂”线粒体,它们将能量以热量形式散发。这是一种消毒机制,他解释说,“很多细菌在温度超过40℃时就无法复制、繁殖”。而肿胀则是受损细胞释放物质,让血细胞把液体渗漏到周围组织的结果,以将受伤区域与周围的健康组织隔离开来。


芬奇开始检测那些与宿主防御相关的、人类特有的基因变化。他很快注意到了编码 载脂蛋白 E(APOE) 的基因的变化。这个基因对脂质的运输和代谢、大脑的发育和免疫系统的运行都有重要作用。在人体中,它主要有3种类型(等位基因),其中编码APOE e4和APOE e3的基因最为常见。







请到「今天看啥」查看全文