对于可以被称为“真正的”数据科学家,这是我可以想出的最好的描述。你知道,独角兽。除了,没有独角兽,说不同的话的人都是在撒谎。
数据管理专业人员和数据工程师关注数据的基础设施。商业分析人员关注从数据中提取事实。机器学习研究者和从业者关注推进和使用相关工具,以利用数据来进行预测和相关分析。这两种角色都是基于算法(开发或利用或两者兼具)。数据导向的专业人员主要关注数据本身以及它可以告诉的事实,并不涉及执行任务时所需要的技术或工具。
面向数据的专业人员可能使用上面任何角色中列出的任何技术,这取决于他们的具体职责。这是与“数据科学”有关的最大的问题之一;该术语并没有什么具体的实际意义,但在整体上又包括了一切。这个角色是就像是数据世界的万金油:(可能)知道如何让一个Hadoop生态系统建立和运行;如何对存储在其中的数据执行查询;如何抽取数据,并且载入到非关系型数据库;如何获取非关系型数据并将其提取到平面文件( flat file);如何在R或Python语言中辨别这个数据;如何在进行初步探索性描述分析后设计特征;如何选择适当的机器学习算法来对数据进行预测分析;如何统计分析所述预测任务的结果;如何将结果可视化,以方便非技术人员使用;如何用刚刚描述的数据处理流水线的最终结果告诉管理人员一个令人信服的事实。
这只是数据科学家可能拥有的一些技能。然而,无论如何,这个角色的重点是数据,以及从数据中可以得到什么。同时,在这一个角色中,专业知识占很大的分量,这显然不是这里可以教授的。
关键技术以及需要关注的技能:
统计学
编程语言:Python, R, SQL
数据可视化
沟通能力
延伸阅读:
R语言学习路线:7步教你从菜鸟到专家
(http://www.kdnuggets.com/2016/03/datacamp-r-learning-path-7-steps.html)
数据科学入门:讲给初学者的基本概念
(https://www.linkedin.com/pulse/data-science-primer-basic-concepts-beginners-matthew-mayo)
数据科学统计101
(http://www.kdnuggets.com/2016/07/data-science-statistics-101.html)
要在数据科学中做到卓越需要什么样的统计话题?
(http://www.kdnuggets.com/2016/08/statistics-topics-needed-excelling-data-science.html)
数据科学家使用的顶尖算法和方法
(http://www.kdnuggets.com/2016/09/poll-algorithms-used-data-scientists.html)
作为一篇介绍性文章,我有意地忽略了物联网。原因有以下两个:第一,我不想为试图吸取所有这些新信息的人增加困惑;第二,物联网只是一个特殊的数据情况。可能进行一些改进,这些角色都可以适用于物联网数据。但本质来讲还是一样的。
我希望这个介绍能够对那些想要从事“数据科学”或“大数据”行业但不知从哪里或者怎样开始的人们有所帮助。 请记住,对于文章中所提到的任何角色。这里的介绍都不能包罗万象。 但是,对于对数据专业了解不多的人来讲,这是一个很好的起点。
如果你对这个话题的不同看法感兴趣,可以读一读Zachary Lipton的Will the Real Data Scientists Please Stand Up(http://www.kdnuggets.com/2015/05/data-science-machine-learning-scientist-definition-jargon.html)?