专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
Founder Park  ·  对话王诗沐:走出大厂创业,做 3D AI ... ·  昨天  
Founder Park  ·  对话王诗沐:走出大厂创业,做 3D AI ... ·  昨天  
爱可可-爱生活  ·  [CL]《Counterfactual ... ·  2 天前  
爱可可-爱生活  ·  [LG]《Pie: Pooling CPU ... ·  4 天前  
爱可可-爱生活  ·  【FLAME头追踪器:一款用于单图像重建和视 ... ·  4 天前  
宝玉xp  ·  //@高飞:人是瓶颈//@QuantumDr ... ·  1 周前  
51好读  ›  专栏  ›  机器学习研究会

【学习】见微知著:细粒度图像分析进展

机器学习研究会  · 公众号  · AI  · 2017-04-11 18:50

正文



点击上方“机器学习研究会”可以订阅哦
摘要
 

转自:极客头条

有别于通用图像分析任务,细粒度图像分析的所属类别和粒度更为精细,它不仅能在更细分的类别下对物体进行识别,就连相似度极高的同一物种也能区别开来。本文将分别围绕“细粒度图像分类”和“细粒度图像检索”两大经典图像问题来展开,从而使读者对细粒度图像分析领域有全面的理解。


大家应该都会有这样的经历:逛街时看到路人的萌犬可爱至极,可仅知是“犬”殊不知其具体品种;初春踏青,见那姹紫嫣红丛中笑,却桃杏李傻傻分不清……实际上,类似的问题在实际生活中屡见不鲜。如此问题为何难?究其原因,是普通人未受过针对此类任务的专门训练。倘若踏青时有位资深植物学家相随,不要说桃杏李花,就连差别甚微的青青河边草想必都能分得清白。为了让普通人也能轻松达到“专家水平”,人工智能的研究者们希望借助计算机视觉技术(Computer Vision,CV)来解决这一问题。如上所述的这类任务在CV研究中有个专门的研究方向,即“细粒度图像分析”(Fine-Grained Image Analysis)。


细粒度图像分析任务相对通用图像(General/Generic Images)任务的区别和难点在于其图像所属类别的粒度更为精细。以图1为例,通用图像分类其任务诉求是将“袋鼠”和“狗”这两个物体大类(蓝色框和红色框中物体)分开,可见无论从样貌、形态等方面,二者还是很容易被区分的;而细粒度图像的分类任务则要求对“狗”该类类别下细粒度的子类,即分别为“哈士奇”和“爱斯基摩犬”的图像分辨开来。正因同类别物种的不同子类往往仅在耳朵形状、毛色等细微处存在差异,可谓“差之毫厘,谬以千里”。不止对计算机,对普通人来说,细粒度图像任务的难度和挑战无疑也更为巨大。

图1 通用图像分析


在此,本文针对近年来深度学习方面的细粒度图像分析任务,分别从“细粒度图像分类”(Fine-Grained Image Classification)和“细粒度图像检索”(Fine-Grained Image Retrieval)两大经典图像问题进行进展综述,以期读者可以对细粒度图像分析领域提纲挈领地窥得全貌。


原文链接:

http://geek.csdn.net/news/detail/191718

“完整内容”请点击【阅读原文】
↓↓↓