专栏名称: 左林右狸
志在为邻里提供互联网深度八卦。我们的口号是站得高,自然尿的远。欢迎和我们一起八。本账号由@林军和@banly共同维护。
目录
相关文章推荐
51好读  ›  专栏  ›  左林右狸

GAIR上诺奖得主谈中国儿童教育:人与人的区别很早就已经形成

左林右狸  · 公众号  ·  · 2019-07-25 20:50

正文


左林右狸频道按:


7 月 12 日,在计算机学会(CCF)主办,雷锋网、香港中文大学(深圳)承办的 2019 第四届全球人工智能与机器人峰会(CCF-GAIR 2019)上,诺贝尔经济学奖得主 James J.Heckman 做了关于儿童成长能力研究的报告。


James J.Heckman 是芝加哥大学经济学教授,2000 年,他因为在计量经济学和微观经济学方面的贡献与 Daniel McFadden 一起获得了当年的诺贝尔经济学奖。


在我们的生活越来越被人工智能驱动甚至替代,人机互动越来越多地吸引学界和业界眼光时,James 的研究仍然聚焦在人与人之间的互动,如今他的课题主要是探究儿童在成长过程中如何通过与外界的互动,培养认知、交往、情商、健康管理等能力,由此更高效地帮助孩子提高技能。


并且,James 的研究与中国息息相关,他们在上海、甘肃都获取了非常丰富的样本,中国的劳动力现状、城市与农村之间的发展不平衡、农村留守儿童的教育困境、社会教育资源的分配,James 对这些问题都有着自己的清晰认知与深入见解。


而人工智能的发展,各种可穿戴设备的应用,也在帮助其进行更完整的数据跟踪与存储,由此更全面地反应儿童成长现状。


James 不断强调的一点是,越早在孩子教育中投资,受益越大,反之,将来要弥补这种缺失也需要付出更大的代价。


这种状况已经被越来越多的中国年轻父母所意识到,在线教育近几年的高速发展便是一个佐证。 从 2013 年开始,中国在线教育就进入了井喷式的发展期,出现了如 VIPKID、哒哒英语、猿辅导等一大批互联网教育公司,儿童教育支出正在占据家庭支出越来越大的比例,而在线教育也在不同程度地缓解地区教育资源不均衡的问题。


在 James 提出问题、探索答案的同时,中国的教育也在朝着他希望抵达的方向推进。

文 | GAIR

转载自公众号“雷锋网”

James J.Heckman


非常感谢大家给我这个机会能够让我参加此次会议,虽然说我并不是最最厉害的人,但是我也想给大家分享一些内容。


今天我想给大家介绍的,是从一个生命周期的角度来看一下我们应该如何进一步积累以及增长我们的技能,我还会简单地介绍一下计量经济学在国际以及中国的发展。


今天我为什么来到这里讲这些内容呢?因为我觉得那些成功的人之所以会成功,他们的技能包里一定是有一些共性所在的,比如说他们的成长路径,他们从幼儿成长为一个成年人是如何进行学习的,以及他们与世界的互动方式是怎样的,哪一种类型的互动方式是最为有效的。这些都是我们需要去关注的内容。


我知道在座的各位有些是从事科研的,我想要强调的是,在互动当中如何去量化、如何去制定一个衡量标准。这是我今天要讲解的重点。


一、中国的劳动力短缺越来越严重


大家都知道中国的发展速度非常快,特别是在过去 40 年当中,它的发展速度是非常快的。为什么发展得那么快?大家都知道有一个重要的历史事件,就是中国制定了一个非常聪明的发展策略,引导民众注重学前教育。所以中国有大量的具备中等技能的劳动力。

我们也知道,尽管有这么快的发展速度,还是有很多欠缺的地方,比如说如何让劳动力的技能增长跟上中国的发展速度。


我们来比较一下中国在 2000 年和 2016 年的人口情况,图中蓝色是女性,红色是男性。右边这个图表显示我们在劳动力技能的增长当中遇到了非常多的挑战,中国的老龄化程度正在不断地增加,未来会缺少大量的、中等年龄的劳动力。


今天我来到这里演讲的目的并不是来提一些批判性的意见,而是希望提一些有建设性的建议。因此我们需要了解如何打造这些技能,它的路径是怎样的,以及如何进行操作,这样才能帮助整个国家更好地在转型的过程当中做出更多的贡献。

中国还有大量的固定资产投资。有人认为中国的固定资产投资太多了,我不认为有证据证明它“太多了”。实际上,经济发展需要的并不仅仅是机器、机械化,还需要让人类在其中发挥更重要的作用,就需要科技对人文做出一些关怀。


二、家境差距带来教育悬殊


中国城市和农村之间的人均收入差距很大,城市大约是农村的 2.5 倍以上;教育也很悬殊,高等教育的差距随着教育阶段增加而迅速扩大。 这带来了很大问题,农村留守儿童的教育程度要明显低于城市地区,他们的生活环境也和城市地区大有不同。


我们再看看现在的儿童的教育背景,留守儿童的教育是受到很大影响的,他们主要是祖父母在带的,由于他们的祖父母没有受过多少教育,因此对他们的教育也不是很重视。 比如说在广东,有很多孩子是在农村地区的,他们在教育方面是很落后的。在 2010 年的一项研究中,农村留守儿童的语文和数学测试成绩都要显著低于城市儿童。



这里有一张儿童在不同年龄的平均成绩的图表。从图里我们可以知道两件事,一个显著受到母亲教育程度的影响,母亲是本科毕业生的儿童成绩最好,母亲不到高中学历的儿童成绩最糟糕。留守儿童目前的教育问题很严重就归因于这一点。


另外一个要素是儿童在家境比较好和家境不太好的家庭之间产生了差距,在 3 岁之前,我们可以看到两种家庭的差距很大,儿童的家境对他的发展起到很大的作用。


三、人与人之间的区别早已形成


一个人需要具备的技能是多种多样的。在现代社会当中想要成功,需要很好的认知、非认知技能,需要情商、社交技能、好的个性和品味。这其中也包括了解决实际问题的能力。大家常提起的 IQ 仅仅是认知技能,而我们把以上这所有技能表示为 θt 。


我们逐渐地了解怎么样去衡量一个人的这些能力,更好地去理解需要哪些能力。不仅仅是聚焦于孩子的智商或者成绩,我们更多的关注于孩子综合的能力,包括认知能力和其它的社交和情商方面的能力,包括父母的认知水平、受教育程度等等,都会产生影响。一个人具备的技能在不同的状况中是稳定的,但是也会随着时间而不断增进。


我们进一步挖掘,有更重要的理解:一小组最核心的技能 θt 的水平高低决定了而儿童们在长大后的成功程度,不仅仅是职业的成功,还有他们的健康管理、他们自己的幸福指数等等,这都和他们所掌握的综合技能是正相关的。

这里是一个动态的发展历程,这里有相应的公式:后一年的技能水平,由前一年的技能水平(包括自我生产力和交互作用)、广义投资(包括父母和环境)和父母的技能水平决定。


这些能力是通过动态的方式来形成的。因此在技能方面要尽早投入和投资,这些技能对这个孩子在将来人生的发展当中的历程起到至关重要的作用。

在这个过程当中,年龄越早,受到的影响越大。当然在孩子后期的发展当中也会产生一些影响,但是我们实际的发现是,在这样的一个补充作用当中,能够尽早地投资孩子的早期教育,它的产出成效越大。不同的早期技能的培养也会促进更多后来的技能的培养。

还有一点非常重要的是帮助我们更好地理解他的能力形成,也就是整个能力的形成是一个动态的过程,这样一个生产力的提升和能力的提升,是一个逐渐积累的过程。在整个过程当中都会发生积极的作用,所以我们把它称为是孩子整个生命周期的能力形成。

而家庭中父母的不同偏好、对于抚养过程的理解不同,会对能力形成的生命周期有不同的影响,不过这些因素可以对监护人、妈妈们进行干预,带来一些提升。

我们看到现在的技术怎么样来促进孩子在整个生命周期当中的成功。我们知道有基因,以及其它一些要素的影响。


在这里我想把技术在孩子的技能形成当中的公式展示给大家,每一个技术都是基于前一个技术基础上的,所以对技能的投资也是呈现累加的效果,呈现一个马太效应,越早投入,在将来就会产生更大的效果。


这里还存在一个替代因子,它表明早期和后期的投入是存在替代关系的,后期的加大投入可以对早期的投入不足进行弥补。但这个替代关系也有两面性,早期没有做到的,后期需要花费更大的代价去做到;而且,有了早期投入以后,后期也要继续投入才能保证早期投入的效果。

这里显示出在整个生命周期当中的投资与回报的关系。随着年龄的增加,可以看到越是在孩子后期投入来增长他的某项技能,投入越大,而效果会越弱。所以非常重要的是在孩子的成长周期当中,我们要尽量充分地利用这样一个曲线。

这里也就引出了一个问题,如何适当地在后期增大投入补充早期投入的不足。在这个过程当中需要有很多的投资,但是关键在于我们对最有效的投资还没有完整的理解,这里面包括有经济研究、社会科学的研究,还有包括人工智能在内的技术研究的工作还要继续进行。

我们把这样一个技能矢量进行分解,包括认知、社会能力和情商,以及健康管理方面的因子,可以看到技能产生行为,我们看一下他执行的任务,他在某个任务的执行上是否成功,完全取决于他的努力程度和他掌握技能的熟练程度等等。


努力程度的确很关键,还有其它的环境的因素,包括对他的努力的认可和激励机制等等都产生影响,这当中有大量的工作需要我们去考量,才能更好地去估算和计算他们的这样一些作用,包括非因子的一些要素模型等等,这样我们可以对一些技能进行评估,特别是前沿技术的技能。当然还有一些处于相对比较低维度的技能因子,也会产生行为上很大的改变,这对我们的技能形成也是很重要的一些估算因子。


这里已经向我们提出了一个挑战,我们要设置一个最优化的机制是有挑战的,当然我们已经有了一些能力的测量,还有一些考试的分数,但是分数只是分数而已,我们必须要去分解成具体的技能。


在这里有一个关键要素,到底投资多少才是合适的,怎么样去测量它的效果?怎么制定政策?怎么样把收集的观察数据用于优化这样的一些投资。这里有一个简单的例子向我们表明,教育在这个方面的作用,包括我们的初衷,在我们的认知能力和非认知能力方面的一些发展。这两者都是在教育当中对孩子的综合技能的形成有重要的作用。


四、尽早进行有质量的干预


我们的多种行为,包括和社会的交互,他的健康、收入、人员之间的信任都受到一些低维度的矢量很大的影响,还包括人们如何去为一些复杂的社会问题提供解决方案的能力等等。 而且一个人的能力不是一成不变的,在整个生命周期当中不断地演化,很显然,环境和学校都是会发挥一定作用的,有些因子作用更大一些。


在这个过程当中,我们可以看到他在年龄小的时候由于弱势的环境所造成的影响要去弥补,年龄越大效果越差,这样一个理论非常重要,这一点显示出我们要确保让孩子尽量早地不要处于弱势的地位,或者接受更好的教育,这样能够避免他们在后期花了大的力气又效果不好的情况出现。


越早投资他们的教育,在将来会有很大的作用,它的优势明显,这样的投资使得他后面走的每一步都基于前面更强的基础,可以实现一个马太效应,这个过程中,后期的投资效果也会更好。

我们必须要有非常精准的策略,所以我们必须要了解越后面投资于孩子的教育,他的缺点是显而易见的。


在这里看到的是,如果他在早期的时候认知和非认知能力比较弱,到后面需要大量的投资,还不考虑到一些相关的社会的政策,只是从投资的角度来说,这对社会的投资效率或者生产率的提升,把这个投资放到孩子后期来做,都是一种投资产出比更弱的方式。因此这里展现出早期教育的投资越高,其实对后期是很有帮助的。


在这里我们可以部分规避这样的风险,以避免孩子在早期处于弱势的地位,到了大学,哪怕你非常用功,使出很多倍的努力,也是效果不如早期的阶段,我们需要联合社会各界的力量,来更好地了解这样一个教育投资的曲线,这样才能在孩子的技能形成过程当中有一个良性的发展,让孩子尽量小的时候就有一个好的学习环境,使他有一个竞争优势。


比如说在美国最成功的一个项目,我们也是进行了一个随机性的实验,在这个试验项目当中,我们发现这些实验组的学生,他们能够更好地参与到学校和家长的互动当中,他们在这个过程当中有更多的自主性,而不是只是家长和学校很权威,孩子不敢发出声音。

这为我们带来的政策启示是:我们需要有精确指向的策略;政策制定者需要考虑如何分配全社会中的教育资源;调动家长的积极性,可以增强其它投资的效果;最优的策略应该在最落后的方面做最多的投资。

30 年前我们在 Jamaican 做过一个介入项目。不过中国还是有很大不同的,并不是所有地区的项目都适用。我们先来看一下 Jamaican 这个介入的实验是怎么做的,他们会选择一些孩子,来跟踪他们的情况,我们选择 129 个孩子,做一个随机性的介入测试。


简单介绍一下这些孩子和家长的互动是如何进行的,首先我们要理解一下,一个是从经验主义的角度来看,另外一个是从学术的角度来看,孩子和家长之间的互动。我们做了一个建模,我们认为它是一个非常动态的游戏型的互动,并且它是一个学习型的互动。







请到「今天看啥」查看全文