专栏名称: 机器之心
专业的人工智能媒体和产业服务平台
目录
相关文章推荐
爱可可-爱生活  ·  【[76星]Direct3D:将2D图像直接 ... ·  11 小时前  
机器之心  ·  817样本如何激发模型7倍推理性能,上交大L ... ·  11 小时前  
宝玉xp  ·  顶级咨询公司的高管们,日常都怎么用 AI ... ·  15 小时前  
爱可可-爱生活  ·  【斯坦福大学 CS229 机器学习 ... ·  昨天  
爱可可-爱生活  ·  【[288星]Epigram:一个开源、免费 ... ·  3 天前  
51好读  ›  专栏  ›  机器之心

资源 | 图森未来开源:Mask R-CNN的完整MXNet复现

机器之心  · 公众号  · AI  · 2017-10-26 11:57

正文

机器之心经授权发布

来源:图森未来

当地时间 10 月 22 日,计算机视觉国际顶级会议 ICCV 2017 公布了获奖论文。 Facebook AI 研究员何恺明获得最佳论文奖,同时他也是最佳学生论文的作者之一 。这篇文章是国内 自动驾驶创业公司图森未来 对最佳论文《Mask R-CNN》的完整复现,并将其开源到了Github 上。


对于 CV 圈的小伙伴们来说,这两天最大的新闻一定是何恺明大神在 ICCV 上拿下了双 best paper 啦!在各种社交平台上,大家纷纷表示「神就是神,非吾等凡人能比」,还有小伙伴直言「人家的 best paper 都快比我的 paper 多了」……


当然,大家的种种「自愧不如」,其实更多的是在表达对恺明大神的崇拜以及对最优秀的学术研究人员表达敬意。与此同时,很多从业者更关心的问题是:什么时候能看到开源代码?



图森未来也由衷地恭喜恺明大神,并且为他所取得的成就而感到振奋。而且这一次,除了通过社交媒体平台为恺明大神打 call 之外,图森未来还做了一件实实在在的事情——完整复现何恺明大神的论文结果(Mask R-CNN 和 Feature Pyramid Network),并将对应代码开源给大家!这也是第一份能够完整复现何恺明大神论文结果的开源代码。


论文中用于实例分割的 Mask R-CNN 框架


Github 项目地址:https://github.com/TuSimple/mx-maskrcnn


MX Mask R-CNN


这是一份对 Mask R-CNN 的实现。该实现的 repository 主要是基于 Faster RCNN 的 mx-rcnn 实现。



主要结果


Cityscapes



  • 主干: Resnet-50-FPN


COCO


马上放出,请保持关注。


系统要求


我们是在以下配置上测试的代码:


  • Ubuntu 16.04, Python 2.7

  • numpy(1.12.1), cv2(2.4.9), PIL(4.3), matplotlib(2.1.0), cython(0.26.1), easydict


训练准备


1. 下载 Cityscapes 数据 (gtFine_trainvaltest.zip, leftImg8bit_trainvaltest.zip). 提取到 'data/cityscape/'。文件夹如下:



2. 下载 Resnet-50 预训练模型


bash scripts/download_res50.sh


3. 使用 ROIAlign 运算符构建MXNet


cp rcnn/CXX_OP/* incubator-mxnet/src/operator/


从源代码建立 MXNet 请参考教程:https://mxnet.incubator.apache.org/get_started/build_from_source.html


4. 构建相关 cython 代码


make


5. 开始训练


bash scripts/train_alternate.sh


评估准备


1. 准备 Cityscapes 评估脚本


bash scripts/download_cityscapescripts.sh


2. Eval


bash scripts/eval.sh


Demo


1. 模型可以从以下链接中下载,请将其放置在 model 文件夹内。


  • Dropbox 链接:https://www.dropbox.com/s/zidcbbt7apwg3z6/final-0000.params?dl=0

  • 百度云链接:https://pan.baidu.com/s/1o8n4VMU


2. 请确认你已经把 cityscapes 数据放置在「data/cityscapes」文件夹中。


bash scripts/demo.sh


参考


Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. In Neural Information Processing Systems, Workshop on Machine Learning Systems, 2015


Ross Girshick. "Fast R-CNN." In Proceedings of the IEEE International Conference on Computer Vision, 2015.


Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. "Faster R-CNN: Towards real-time object detection with region proposal networks." In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.


Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, Serge Belongie. "Feature Pyramid Networks for Object Detection." In Computer Vision and Pattern Recognition, IEEE Conference on, 2017.







请到「今天看啥」查看全文