专栏名称: 23Plus
23Plus是首个专注于表观遗传学领域的网络社区平台,汇聚全球表观遗传领域专家、学者以及医疗实践者,致力于打造兼专业与科普为一体的的表观遗传互动阵地。
目录
相关文章推荐
生物学霸  ·  一个人发表 ... ·  昨天  
BioArt  ·  Nat Aging | ... ·  4 天前  
生物制品圈  ·  健行姑苏 | 生物制药生产工艺研讨会 ·  1 周前  
51好读  ›  专栏  ›  23Plus

教你学会ChIP-seq分析 | 第二讲

23Plus  · 公众号  · 生物  · 2017-06-29 07:01

正文

写在前面

本次系列文章为大家带来的是生信菜鸟图案的经典文章合辑:《教你学会ChIP-seq分析》共九讲内容带领你从相关文献解读、资料收集和公共数据下载开始,通过软件安装、数据比对、寻找并注释peak、寻找motif等ChIP-seq分析主要步骤入手学习,最后还会介绍相关可视化工具。


第二讲:资料收集

ChIP-seq的确是非常完善的NGS流程,各种资料层出不穷。


大家首先可以看下面几个完整流程的PPT来对ChIP-seq流程有个大致的印象,我对前面提到的文献数据处理的几个要点,就跟下面这个图片类似。



  • QuEST is a statistical software for analysis of ChIP-Seq data with data and analysis results visualization through UCSC Genome Browser. http://www-hsc.usc.edu/~valouev/QuEST/QuEST.html

  • peak calling 阈值的选择: http://www.nature.com/nprot/journal/v7/n1/figtab/nprot.2011.420F2.html

  • MeDIP-seq and histone modification ChIP-seq analysis http://crazyhottommy.blogspot.com/2014/01/medip-seq-and-histone-modification-chip.html

  • 2011-review-ChIP-seq-high-quaility-data: http://www.nature.com/ni/journal/v12/n10/full/ni.2117.html?message-global=remove

  • 不同处理条件的CHIP-seq的差异peaks分析: http://www.slideshare.net/thefacultyl/diffreps-automated-chipseq-differential-analysis-package

  • 一个实际的CHIP-seq数据分析例子: http://www.biologie.ens.fr/~mthomas/other/chip-seq-training/

  • http://biow.sb-roscoff.fr/ecolebioinfo/trainingmaterial/chip-seq/documents/presentation_chipseq.pdf

  • http://ecole-bioinfo-aviesan.sb-roscoff.fr/sites/ecole-bioinfo-aviesan.sb-roscoff.fr/files/files/chipseqCarlHerrmannRoscoff2015.pdf

  • http://ecole-bioinfo-aviesan.sb-roscoff.fr/sites/ecole-bioinfo-aviesan.sb-roscoff.fr/files/files/defrance-ChIP-seq_annotation.pdf


然后下面的各种资料,是针对ChIP-seq流程的各个环境的,还有一些是针对于表观遗传学知识


  • ppt : http://159.149.160.51/epigenmilano/epigenbarozzi.pdf

  • best practise: http://bioinformatics-core-shared-training.github.io/cruk-bioinf-sschool/

  • pipeline : https://github.com/shenlab-sinai/chip-seq_preprocess

  • https://sites.google.com/site/anshul...e/projects/idr ## samtools view -b -F 1548 -q 30 chipSampleRep1.bam

  • pipeline : http://daudin.icmb.utexas.edu/wiki/index.php/ChIPseqprepand_map

  • pipeline : https://github.com/BradyLab/ChipSeq/blob/master/chipseq.sh

  • https://github.com/crukci-bioinformatics/chipseq-pipeline

  • https://github.com/ENCODE-DCC/chip-seq-pipeline

  • Hands-on introduction to ChIP-seq analysis - VIB Training http://www.biologie.ens.fr/~mthomas/other/chip-seq-training/

  • video(A Step-by-Step Guide to ChIP-Seq Data Analysis Webinar) : http://www.abcam.com/webinars/a-step-by-step-guide-to-chip-seq-data-analysis-webinar

  • Using ChIP-Seq to identify and/or quantify bound regions (peaks)http://barcwiki.wi.mit.edu/wiki/SOPs/chipseqpeaks

  • http://jura.wi.mit.edu/bio/education/hottopics/ChIPseq/ChIPSeqHotTopics.pdf

  • http://pedagogix-tagc.univ-mrs.fr/courses/ASG1/practicals/chip-seq/mapping_tutorial.html

  • 公开课: https://www.coursera.org/learn/galaxy-project/lecture/FUzcg/chip-sequence-analysis-with-macs

  • EBI的教程:https://www.ebi.ac.uk/training/online/course/ebi-next-generation-sequencing-practical-course/chip-seq-analysis/chip-seq-practical

  • 台湾教程:http://lsl.sinica.edu.tw/Services/Class/files/20151118475_2.pdf 徐唯哲 Paul Wei-Che HSU

  • peak finder软件大全: http://wodaklab.org/nextgen/data/peakfinders.html

  • https://www.encodeproject.org/documents/049704a4-5c58-4631-acf1-4ef152bdb3ef/@@download/attachment/LearningChromatinStatesfromChIP-seq_data.pdf

  • https://bioshare.bioinformatics.ucdavis.edu/bioshare/download/47aq5pp5mzza5vb/PDFs/TuesdayMBChIP-Seq_Intro.pdf

  • paper: Large-Scale Quality Analysis of Published ChIP-seq Data http://www.g3journal.org/content/4/2/209.full

  • paper: ChIp-seq data analysis: from quality check to motif discovery and more http://ccg.vital-it.ch/var/sibapril15/cases/landt12/strandcorrelation.html

  • Workshop hands on session(RNA-Seq / ChIP-Seq ) : https://hpc.oit.uci.edu/biolinux/handson.docx

  • http://www.gqinnovationcenter.com/documents/bioinformatics/ChIPseq.pptx

  • paper supplement : http://genome.cshlp.org/content/suppl/2015/10/02/gr.192005.115.DC1/Supplemental_Information.docx

  • http://www.illumina.com/documents/products/datasheets/datasheetchipsequence.pdf

  • http://www.ncbi.nlm.nih.gov/pubmed/22130887 "Analyzing ChIP-seq data: preprocessing, normalization, differential identification, and binding pattern characterization."

  • http://www.ncbi.nlm.nih.gov/pubmed/22499706 "Normalization, bias correction, and peak calling for ChIP-seq." (stat heavy)

  • http://www.ncbi.nlm.nih.gov/pubmed/24244136 "Practical guidelines for the comprehensive analysis of ChIP-seq data."

  • http://www.ncbi.nlm.nih.gov/pubmed/25223782 "Identifying and mitigating bias in next-generation sequencing methods for chromatin biology."

  • http://www.ncbi.nlm.nih.gov/pubmed/24598259 "Impact of sequencing depth in ChIP-seq experiments."

  • figures: https://github.com/shenlab-sinai/ngsplot


可视化工具

  • https://github.com/daler/metaseq

  • http://liulab.dfci.harvard.edu/CEAS/usermanual.html


bioconductor系列工具和教程 :

  • http://faculty.ucr.edu/~tgirke/HTMLPresentations/Manuals/WorkshopDec610_2012/Rchipseq/Rchipseq.pdf

  • http://bioinformatics-core-shared-training.github.io/cruk-bioinf-sschool/Day4/chipqc_sweave.pdf

  • http://bioconductor.org/packages/release/bioc/html/chipseq.html

  • http://bioconductor.org/help/workflows/chipseqDB/

  • http://bioconductor.org/help/workflows/generegulation/

  • http://bioconductor.org/help/course-materials/2009/EMBLJune09/Practicals/chipseq/BasicChipSeq.pdf


公司教程

  • http://www.partek.com/Tutorials/microarray/Tiling/ChipSeqTutorial.pdf


本系列历史文章列表

教你学会ChIP-seq分析 | 第一讲


本文转载自


“生信技能树”公众号

初与大家分享自己的生信学习笔记及心得体会。促进生信的学习和交流,构建出完整的生信技能树。搭建生信技术人员联盟,从入门到进阶帮助到每一位生信人。最期待看到团队成员的成长,以及论坛稳健发展和各版块完善。带领团队和论坛成员完善生信技能树的同时,自己也收获前所未有的锻炼,希望自己不忘初心。


"生信技能树"论坛

生信技能树创建于2016年8月,是中国第一家专注于生信知识体系完善、促进生信学习交流的论坛。我们通过收集国内外生信学习资源,邀请大神分享的领域专业知识,发布菜鸟的真实学习笔记,搭建生信技术人员联盟,从入门到进阶帮助每一位生信人。

欢迎点击文末“阅读原文”了解“生信技能树”论坛,上面有本文作者jimmy原创的一千多篇教程


23Plus欢迎表观遗传领域的同行们投稿,分享学术成果、学术见解和学术故事。

投稿请联系:

[email protected]

微信添加23Plus小秘书:

plus23_sec

拉您入群参加更深入的讨论。


23Plus: 首个专注于表观遗传学领域的网络社区

微信号:epi23plus