专栏名称: 机器学习与推荐算法
专注于分享经典的推荐技术,致力于传播基础的机器学习、深度学习、数据挖掘等方面的知识。
目录
相关文章推荐
51好读  ›  专栏  ›  机器学习与推荐算法

2024推荐系统大厂顶会工作整理

机器学习与推荐算法  · 公众号  ·  · 2024-12-17 08:00

正文

请到「今天看啥」查看全文


嘿,记得给“ 机器学习与推荐算法 ”添加 星标

转自: 圆圆的算法笔记

链接: mp.weixin.qq.com/s/aWdPk_zKwJX7gnsahQNcSw

这篇文章给大家汇总一下过去一年,头部大厂在顶会发布的推荐系统领域工作。在推荐系统领域, 大厂的顶会工作相对有代表性,是最顶尖的推荐团队一段时间工作的精华 ,因此更有参考价值。

本文汇总了2024年KDD、WWW、WSDM等顶会中,阿里、腾讯、亚马逊等头部企业发表的推荐系统代表性工作,共 49篇 论文,涉及大模型、冷启动、消偏、多场景、多任务、多模态、兴趣建模、模型结构优化、CVR预估等 11个 推荐系统主要优化方向。

相关领域的详细工作解析和整理,后续也会逐渐在公众号中更新,感兴趣的同学欢迎持续关注。

1

大模型推荐系统

RecSys——华为——大模型:FLIP: Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction

RecSys——美团——大模型:LARR: Large Language Model Aided Real-time Scene Recommendation with Semantic Understanding

RecSys——腾讯——大模型:Scaling Law of Large Sequential Recommendation Models

RecSys——腾讯——大模型:The Elephant in the Room: Rethinking the Usage of Pre-trained Language Model in Sequential Recommendation

RecSys——蚂蚁——大模型:ReLand: Integrating Large Language Models’ Insights into Industrial Recommenders via a Controllable Reasoning Pool

WWW——领英——大模型:Collaborative Large Language Model for Recommender Systems

WWW——华为——大模型:ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction

WWW——百度——大模型:Representation Learning with Large Language Models for Recommendation

KDD——微软——大模型:RecExplainer: Aligning Large Language Models for Explaining Recommendation Models

ICDE——腾讯——大模型:Adapting Large Language Models by Integrating Collaborative Semantics for Recommendation

SIGIR——蚂蚁——大模型:Enhancing Sequential Recommenders with Augmented Knowledge from Aligned Large Language Models

NeurIPS——华为——大模型:LLM-ESR: Large Language Models Enhancement for Long-tailed Sequential Recommendation

AAAI——蚂蚁——大模型:Fine-Tuning Large Language Model Based Explainable Recommendation with Explainable Quality Reward

2

多模态推荐系统

RecSys——快手——多模态:A Multi-modal Modeling Framework for Cold-start Short-video Recommendation

KDD——腾讯——多模态:Improving Multi-modal Recommender Systems by Denoising and Aligning Multi-modal Content and User Feedback

3

冷启动

RecSys——亚马逊——冷启动:MARec: Metadata Alignment for cold-start Recommendation

RecSys——快手——冷启动:Prompt Tuning for Item Cold-start Recommendation

KDD——百度——冷启动:Warming Up Cold-Start CTR Prediction by Learning Item-Specific Feature Interactions

ICDE——腾讯——冷启动:Firzen: Firing Strict Cold-Start Items with Frozen Heterogeneous and Homogeneous Graphs for Recommendation

4

多场景建模

RecSys——阿里——多场景:MLoRA: Multi-Domain Low-Rank Adaptive Network for CTR Prediction

RecSys——美团——多场景:Scene-wise Adaptive Network for Dynamic Cold-start Scenes Optimization in CTR Prediction

WWW——蚂蚁——多场景:Rethinking Cross-Domain Sequential Recommendation under Open-World Assumptions

WWW——阿里——多场景:Not All Embeddings are Created Equal: Towards Robust Cross-domain Recommendation via Contrastive Learning

SIGIR——腾讯——多场景:Aiming at the Target: Filter Collaborative Information for Cross-Domain Recommendation

SIGIR——阿里——多场景:Scenario-Adaptive Fine-Grained Personalization Network: Tailoring User Behavior Representation to the Scenario Context

5

多任务学习

RecSys——腾讯——多任务:Touch the Core: Exploring Task Dependence Among Hybrid Targets for Recommendation

AAAI——腾讯——多任务:STEM: Unleashing the Power of Embeddings for Multi-task Recommendation

SIGIR——快手——多任务:MDMTRec: An Adaptive Multi-Task Multi-Domain Recommendation Framework

6

表示学习

RecSys——快手——表示学习:MMGCL: Meta Knowledge-Enhanced Multi-view Graph Contrastive Learning for Recommendations

WWW——腾讯——表示学习:GraphPro: Graph Pre-training and Prompt Learning for Recommendation

KDD——亚马逊——表示学习:Shopping Trajectory Representation Learning with Pre-training for E-commerce Customer Understanding and Recommendation

7

CVR预估

RecSys——华为——CVR预估:Ranking-Aware Unbiased Post-Click Conversion Rate Estimation via AUC Optimization on Entire Exposure Space

RecSys——腾讯——CVR预估:Utilizing Non-click Samples via Semi-supervised Learning for Conversion Rate Prediction

8

推荐系统消偏

WWW——腾讯——消偏:Causally Debiased Time-aware Recommendation

KDD——消偏——Counteracting Duration Bias in Video Recommendation via Counterfactual Watch Time

RecSys——华为——消偏:AIE: Auction Information Enhanced Framework for CTR Prediction in Online Advertising

9

模型结构优化

RecSys——雅虎——特征优化:Low Rank Field-Weighted Factorization Machines for Low Latency Item Recommendation

AAAI——快手——时长预估:CREAD: A Classification-Restoration Framework with Error Adaptive Discretization for Watch Time Prediction in Video Recommender Systems

SIGIR——腾讯——CTR预估:Deep Pattern Network for Click-Through Rate Prediction

10

优化算法

AAAI——京东——优化算法:Generalize for Future: Slow and Fast Trajectory Learning for CTR Prediction

WSDM——亚马逊——优化算法:To Copy, or not to Copy; That is a Critical Issue of the Output Softmax Layer in Neural Sequential Recommenders

11

用户兴趣建模

WSDM——华为——兴趣建模:User Behavior Enriched Temporal Knowledge Graph for Sequential Recommendation

WSDM——快手——兴趣建模:Collaboration and Transition: Distilling Item Transitions into Multi-Query Self-Attention for Sequential Recommendation

SIGIR——快手——疲劳度建模:Modeling User Fatigue for Sequential Recommendation

上述工作的详细解析,也会逐渐更新到公众号中,感兴趣的同学可以持续关注。


欢迎 干货投稿 \ 论文宣传 \ 合作交流

推荐阅读

WWW2025首届以人为本推荐系统研讨会征稿
KDD2024 | 深入理解推荐系统中的排序损失
WSDM2025推荐系统论文整理

由于公众号试行乱序推送,您可能不再准时收到 机器学习与推荐算法 的推送。为了第一时间收到本号的干货内容, 请将本号设为 星标 ,以及常点文末右下角的“ 在看 ”。

喜欢的话点个在看吧 👇







请到「今天看啥」查看全文