专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
黄建同学  ·  这会是革RAG命的一个新产品吗?#ai##科 ... ·  昨天  
爱可可-爱生活  ·  //@爱可可-爱生活:欢迎参与抽奖~-202 ... ·  5 天前  
爱可可-爱生活  ·  【免费讲义《数学基础》】《Foundatio ... ·  6 天前  
新智元  ·  突发!OpenAI七年元老、安全副总裁Lil ... ·  6 天前  
51好读  ›  专栏  ›  机器学习研究会

深度学习医学图像分析文献集

机器学习研究会  · 公众号  · AI  · 2017-10-13 23:17

正文



点击上方“机器学习研究会”可以订阅
摘要
 

转自:爱可可-爱生活

Background

To the best of our knowledge, this is the first list of deep learning papers on medical applications. There are couple of lists for deep learning papers in general, or computer vision, for example Awesome Deep Learning Papers. In this list, I try to classify the papers based on their deep learning techniques and learning methodology. I believe this list could be a good starting point for DL researchers on Medical Applications.

Criteria

  1. A list of top deep learning papers published since 2015.

  2. Papers are collected from peer-reviewed journals and high reputed conferences. However, it may have recent papers on arXiv.

  3. A meta-data is required along with the paper, i.e. Deep Learning technique, Imaging Modality, Area of Interest, Clinical Database (DB).

List of Journals / Conferences (J/C):

  • Medical Image Analysis (MedIA)

  • IEEE Transaction on Medical Imaging (IEEE-TMI)

  • IEEE Transaction on Biomedical Engineering (IEEE-TBME)

  • IEEE Journal of Biomedical and Health Informatics (IEEE-JBHI)

  • International Journal on Computer Assisted Radiology and Surgery (IJCARS)

  • International Conference on Information Processing in Medical Imaging (IPMI)

  • International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)

  • International Conference on Information Processing in Computer-Assisted Interventions (IPCAI)

  • IEEE International Symposium on Biomedical Imaging (ISBI)

Shortcuts

Deep Learning Techniques:

  • NN: Neural Networks

  • MLP: Multilayer Perceptron

  • RBM: Restricted Boltzmann Machine

  • SAE: Stacked Auto-Encoders

  • CAE: Convolutional Auto-Encoders

  • CNN: Convolutional Neural Networks

  • RNN: Recurrent Neural Networks

  • LSTM: Long Short Term Memory

  • M-CNN: Multi-Scale/View/Stream CNN

  • FCN: Fully Convolutional Networks

Imaging Modality:

  • US: Ultrasound

  • MR/MRI: Magnetic Resonance Imaging

  • PET: Positron Emission Tomography

  • MG: Mammography

  • CT: Computed Tompgraphy

  • H&E: Hematoxylin & Eosin Histology Images

  • RGB: Optical Images

Table of Contents

Deep Learning Techniques

  • AutoEncoders/ Stacked AutoEncoders

  • Convolutional Neural Networks

  • Recurrent Neural Networks

  • Generative Adversarial Networks

Medical Applications

  • Annotation

  • Classification

  • Detection/ Localization

  • Segmentation

  • Registration

  • Regression

  • Other tasks


链接:

https://github.com/albarqouni/Deep-Learning-for-Medical-Applications


原文链接:

https://m.weibo.cn/1402400261/4162373902287270

“完整内容”请点击【阅读原文】
↓↓↓