直接了当的说,知识图谱是人工智能技术的重要组成部分,它是具有语义处理与信息互联互通能力的知识库。通常在智能搜索、机器人聊天、智能问答以及智能推荐方面有着广泛的应用。
今天我们学习和探讨的知识图谱,实际是Google公司在2012年提出的为了提高搜索引擎能力,增强用户的搜索效率效果以及搜索体验的一种技术实践。
而在10年前,就已经提出了语义网的概念,呼吁业界推广并完善利用本体(Ontology)模型来形式化表达数据中的隐含语义,便于知识的高效呈现和利用。知识图谱技术的出现正是基于以上相关研究,是对语义网相关技术和标准的提升。
知识图谱中的一些概念要素:
实体:是指具有可区别性且独立存在的某种事物(有点像面向对象编程里的Object)。如某一种动物、某一个城市、某一种水果、某一类商品等等。世界万物有具体事物组成,此指实体。实体是知识图谱中的最基本元素,不同的实体间存在不同的关系。
语义类(概念):概念主要指集合、类别、对象类型、事物的种类,例如人物、地理等。
属性:主要指对象可能具有的属性、特征、特性、特点以及参数,例如国籍、生日等。
属性值:主要指对象指定属性的值,例如国籍对应的“中国”、生日对应1988-09-08等。每个属性-属性值对可用来刻画实体的内在特性。
关系:用来连接两个实体,刻画它们之间的关联。形式化为一个函数,它把kk个点映射到一个布尔值。在知识图谱上,关系则是一个把kk个图节点(实体、语义类、属性值)映射到布尔值的函数。
知识图谱中一般用三元组的方式来表达,三元组的基本形式主要包括(实体1-关系-实体2)和(实体-属性-属性值)等。每个实体可用一个全局唯一确定的ID来标识,每个属性-属性值对可用来刻画实体的内在特性。
下图是一个以上概念和关系形象展示,帮助理解知识图谱的内容。