专栏名称: 新智元
智能+中国主平台,致力于推动中国从互联网+迈向智能+新纪元。重点关注人工智能、机器人等前沿领域发展,关注人机融合、人工智能和机器人革命对人类社会与文明进化的影响,领航中国新智能时代。
目录
相关文章推荐
爱可可-爱生活  ·  【[50星]mdy_triton:一键加速H ... ·  17 小时前  
爱可可-爱生活  ·  【GitHub Copilot ... ·  昨天  
爱可可-爱生活  ·  【[395星]chromem-go:为Go语 ... ·  2 天前  
宝玉xp  ·  Anthropic 并不鼓励用 AI ... ·  3 天前  
51好读  ›  专栏  ›  新智元

GPU推理时代终结?世界最大芯片加持推理狂飙20倍,英伟达H100也被干趴!

新智元  · 公众号  · AI  · 2024-08-28 12:51

主要观点总结

新智元报道了关于Cerebras公司推出的人工智能推理架构Cerebras Inference的信息。该架构极大地提高了人工智能模型的推理速度,特别是针对LLM模型。Cerebras Inference实现了以每秒超过一千个token的速度进行推理,远超英伟达GPU和其他平台的速度。这主要得益于Cerebras的自研芯片技术,尤其是世界上最大的芯片之一WSE-3。此外,Cerebras Inference确保了推理过程中的高精度和出色的性价比。同时,开发者可以通过聊天平台和API访问体验。

关键观点总结

关键观点1: Cerebras Inference实现了惊人的推理速度

Cerebras Inference能够以每秒超过一千个token的速度进行推理,远超英伟达GPU和其他平台的速度。这对于大型语言模型(LLM)来说尤其重要。

关键观点2: Cerebras采用了自研的世界上最大的芯片之一WSE-3

WSE-3芯片具有巨大的内存和高速的内存带宽,能够解决内存带宽瓶颈问题,从而实现高速推理。

关键观点3: Cerebras Inference确保了推理过程中的高精度

与一些公司减少模型权重精度以提高推理速度的方法不同,Cerebras Inference保持了原始的16位权重,确保了高准确率。

关键观点4: Cerebras Inference具有出色的性价比

Cerebras Inference提供了最佳的性能、速度、精度和成本组合。它的定价远低于其他平台,而且每天为开发者提供免费的token。

关键观点5: 快速推理对于复杂AI工作流程的实现至关重要

快速推理能够实现更为复杂的AI工作流程,提高AI模型的智能性,而无需额外训练。


正文



新智元报道

编辑:桃子 好困
【新智元导读】 LLM若以每秒1000+token高速推理,当前最先进的GPU根本无法实现!Cerebras Inference一出世,推理速度赶超英伟达GPU,背靠自研的世界最大芯片加持。而且,还将推理价格打了下来。

LLM若想高速推理,现如今,连GPU都无法满足了?
曾造出世界最大芯片公司Cerebras,刚刚发布了全球最快的AI推理架构——Cerebras Inference。
运行Llama3.1 8B时,它能以1800 token/s的速率吐出文字。
不论是总结文档,还是代码生成等任务,响应几乎一闪而过,快到让你不敢相信自己的眼睛。
如下图右所示,以往,微调版Llama3.1 8B推理速度为90 token/s,清晰可见每行文字。

而现在,直接从90 token/s跃升到1800 token/s,相当于从拨号上网迈入了带宽时代。

左边Cerebras Inference下模型的推理速度,只能用「瞬间」、「疯狂」两字形容。

这是什么概念?

比起英伟达GPU,Cerebras Inference的推理速度快20倍,还要比专用Groq芯片还要快2.4倍。
另外,对于70B参数的Llama3.1,可达到450 token/s及时响应。
值得一提的是,Cerebras并没有因为提高LLM的速度,而损失其精度。
测试中,使用的Llama3.1模型皆是采用了Meta原始16位权重,以便确保响应高精度。
最关键的是,价格还实惠。
根据官方API定价,Llama 3.1 8B每百万token仅需10美分,Llama 3 70B每百万token仅需60美分。
如此之高的性价比,更是打破了业界纪录——
不仅远超之前的保持者Groq,而且和其他平台相比,甚至是隔「坐标轴」相望了。

Artificial Analysis
正是因为Cerebras Inference背后,是由自研的第三代芯片Wafer Scale Engine助力,才得以1/5价格快速推理Llama3.1。
看到自家模型推理如此神速,LeCun、Pytorch之父纷纷动手转发起来。
还有网友看后表示,我想要!

推理很慢,英伟达GPU也不中用?

为什么LLM的响应,就像拨号上网加载网页一样,一个字一个字慢慢地吐出?
关键原因所在,大模型自身的顺序特性,以及需要大量的GPU内存和带宽。
由于GPU的内存带宽限制,如今推理速度为每秒几十个token,而不是数千个。
更进一步说,大模型每个生成的单词,都必须通过整个模型进行处理,即所有参数必须从内存投入到计算中。
而每生成一个单词,就需要一次处理,以此循环往复。
也就是,生成100个单词需要100次处理,因为「下一词」的预测,皆需要依赖前一个单词,而且这个过程无法并行。
那么,想要每秒生成100个单词,就需要所有模型参数,每秒投入计算100次。
由此,这对GPU内存带宽提出了高要求。
以社区流行的Llama3.1-70B模型为例。
模型有700亿参数,每个参数是16位,需要2字节的存储,那整个模型便需要140GB的内存。
想要模型输出一个token,那700亿参数必须从内存,移动到计算核心,以执行前向推理计算。
由于GPU只有约200MB的片上内存,模型无法存储在芯片。
因此,每次生成的token输出时,需将整个占用140GB内存的模型,完整传输到计算中。
再细算下来,为了实现10 token/s,则需要10*140=1.4 TB/s的内存带宽。
那么,一个H100有3.3 TB/s的内存带宽,足以支持这种缓慢的推理。
而若要实现即时推理,需要达到1000 token/s或140 TB/s,这远远超过任何GPU服务器/系统内存带宽。
或许,你想到了一种「暴力」解决方案,将多个GPU串联搭建DGX系统。
这完全是大错特错,更多的处理器只会增加系统的吞吐量(给出更长响应),并不会加速单个查询的响应时间。

自研世界最大芯片,打破推理想象


那么,Cerebras如何打破这一困局呢?
一直以来,这家公司就致力于打造世界上最大芯片,希望将整个模型存储在一个晶片上,以此来解决内存带宽瓶颈。
凭借独特的晶圆设计,WSE-3单个芯片上便集成了44GB SRAM,具备21 PB/s的内存带宽。
单个芯片拥有如此大内存,便消除了对外部内存的需求,以及将外部内存连接到计算的慢速通道。
总的来说,WSE-3的总内存带宽为21PB/s,是H100的7000倍。
它是唯一一款同时具有PB级计算和PB级内存带宽的AI芯片,使其成为高速推理的近乎理想设计。
Cerebras推理不仅速度超快,而且吞吐量巨大。
与小型AI芯片相比,芯片上内存多了约200倍,支持从1-100的批大小,使其在大规模部署时,具有极高的成本效益。
正是有了如此强大的芯片,Cerebras Inference的快速推理得以实现。
它的出现,是为了实现数十亿到万亿参数模型的推理。
如果模型参数超过单个晶圆的内存容量时,研究人员将在「层边界」将其拆分,并映射到多个CS-3系统上。
20B模型适合单个CS-3,而70B模型则至少需要4个这样的系统。
官方表示,未来几周,将会测试更大参数版本的模型,比如Llama3-405B、Mistral Large。

16位精度,不做取舍

推理速率高,并非在模型权重上,做了取舍。
业界中,一些公司试图将模型权重精度,从16位减少到8位,来克服内存带宽的瓶颈。
这样方法,通常会造成模型精度损失,也就是响应结果的准确性、可靠性不如以前。
Cerebras Inference之所以强就强在了,速率和原始权重,皆要顾及。
正如开篇所述,他们采用了原始16位权重运行了Llama3.1 8B和70B。
通过评估,16位模型准确率比8位模型,高出多达5%。尤其是在,多轮对话、数学和推理任务中表现更好。

最优性价比,百万token免费送

目前,Cerebras Inference可通过聊天平台,以及API访问,任何一个人可随时体验。

体验传送门:https://cerebras.ai/blog/introducing-cerebras-inference-ai-at-instant-speed
基于熟悉的OpenAI Chat Completions格式,开发者只需更换API密钥即可集成强大的推理功能。
Cerebras Inference API提供最佳的性能、速度、精度和成本组合。
它是唯一能即时运行Llama3.1-70B的方案,可实现450 token/s,同样使用的是原始16位模型权重。
在此,Cerebras送上大福利,每天为开发者们提供100万个免费token。对于大规模部署,其定价只是H100云的一小部分。
首次推出时,Cerebras提供了Llama3.1 8B和70B模型,而且有能力每天为开发者和企业,提供数千亿token。
接下来几周,他们将增加对更大模型的支持,如Llama3 405B、Mistral Large 2。
有开发者问道,你们提供的rpm(每分钟请求次数)和tpm(每分钟处理token数)是多少?






请到「今天看啥」查看全文