第一天
(pytorch深度学习框架演练)
理论内容
材料数据库(material project, OQMD, AFLOW)
深度学习入门
图神经网络
材料特征工程
实操内容:
Pytorch深度学习框架演练
Pymatgen介绍及结构文件生成
Pymatgen生成相图,构建表面
Megnet,QM9,JDFT等规模化材料数据集的读取
爬虫获取二维数据集
爬虫获取会议文献和期刊文章的数据
第二天
(数据库的数据获取及演练)
实操内容
1. AFLOW数据库的数据获取
1.1 AFLOW数据库功能练习
1.2. 爬虫获取AFLOW数据库的数据
2. OQMD数据库
2.1 OQMD数据库功能练习
2.2 OQMD数据库的数据获取
实操内容
1. material project数据库
1.1 新版material project获取材料XRD、DOS图、能带图、吸收谱等数据
1.2 Pymatgen按照属性要求获取material project材料数据
2. 材料特征工程工具matminer演练
2.1 matminer获取材料数据集
2.2 matminer生成材料描述符演练
第三天
(结构数据驱动的高通量计算及案例)
实操和演示内容:
基于结构数据驱动的高通量计算:
1. pymatgen大批量结构获取
2. 基于pymatgen的计算文件生成
3. 大批量计算结果的获取与统计
实操内容:
基于数据驱动的功能材料开发案例一(晶体图神经网络实现材料属性预测):
1.用PYG搭建图神经网络(GCN、GAT)
2. 晶体图神经网络CGCNN模型代码原理
3. 利用晶体图神经网络实现材料属性预测
第四天
(基于数据驱动的多个功能材料开发案例及实操)
实操内容:
基于数据驱动的功能材料开发案例二(半导体材料):
1. 背景介绍
2. 数据获取
3. 构建特征
4. 传统机器学习和深度学习处理
5. 讨论与评测
实操内容:
1. 基于数据驱动的功能材料开发案例三(钙钛矿材料分类):
1.1 数据集获取
1.2 构建材料特征
1.3 机器学习训练
1.4 特征可解释性分析
2. 基于数据驱动的功能材料开发案例四(深度学习实现钙钛矿材料性能回归)
2.1 matminer生成材料特征
2.2深度神经网络实现钙钛矿属性预测
2.3传统机器学习与图神经网络预测结果对比