专栏名称: 生物基科研前瞻
生物基领域科学前沿信息
目录
相关文章推荐
芋道源码  ·  为什么 MyBatis 源码中,没有我那种 ... ·  13 小时前  
芋道源码  ·  盘点Lombok的几个骚操作 ·  昨天  
芋道源码  ·  Jenkins + Docker ... ·  2 天前  
51好读  ›  专栏  ›  生物基科研前瞻

史诗级创新!一天连发两篇Nature! “ 为何 ”这项技术这么厉害!

生物基科研前瞻  · 公众号  ·  · 2024-01-11 08:48

正文

机器学习方法作为人工智能重要的支柱之一,近年来受到了广泛的关注。在材料化学领域,由于数据的丰富和计算机运算能力的增强,机器学习方法已经被应用于发现新材料、预测材料和分子性质、研究原子力场和设计药物等多个方向。

随着计算机的发展,许多诸如第一性原理计算、相场模拟、有限元分析等手段随之出现,用以进行材料的结构以及性能方面的计算,但是往往计算量大,费用大。这些都是限制材料发展与变革的重大因素。近年来,这种利用机器学习预测新材料的方法越来越受到研究者的青睐。2018年,在nature正刊上发表了一篇题为“机器学习在分子以及材料科学中的应用”的综述性文章。文章详细介绍了机器学习在指导化学合成、辅助多维材料表征、获取新材料设计方法等方面的重要作用,并表示新一代的计算机科学,会对材料科学产生变革性的作用。利用机器学习算法训练数据集来构建模型,以预测材料的结构、吸附特性、电学特性、催化性能、力学特性和热力学特性等材料性能,大大推动了机器学习在材料科学领域的发展,并且已经取得重要突破。由于该项研究资料和学习平台较少,信息技术不公开,培训学习迫在眉睫,特此诚挚邀请您参加线上培训课,参会会员已达3000余名!助力学员发表Nature、Science、Cell等正刊及子刊!(在新技术加持下,用更少的经费,发更高质量的文章,2024年!冲顶刊)


最火热门专题推荐

1

一、机器学习材料专题

二、深度学习辅助材料设计专题

三、 材料基因组专题回放视频

四、 CP2K专题回放视频



专题一、机器学习材料专题



第一天

理论内容

1.机器学习概述

2.材料与化学中的常见机器学习方法

3.应用前沿

实操内容

Python基础

1.开发环境搭建

2.变量和数据类型

3.列表

4.if语句

5.字典

6.For和while循环

实操内容

Python基础(续)

1.函数

2.类和对象

3.模块

Python科学数据处理

1.NumPy

2.Pandas

3.Matplotlib

第二天

理论内容

1.线性回归

1.1 线性回归的原理

1.2 线性回归的应用

2.  逻辑回归

2.1原理

2.2 使用方法

3.  K近邻方法(KNN)

3.1  KNN分类原理

3.2  KNN分类应用

4. 神经网络方法的原理

4.1 神经网络原理

4.2神经网络分类

4.3神经网络回归

实操内容

1.线性回归方法的实现与初步应用(包括L1和L2正则项的使用方法)

2.逻辑回归的实现与初步应用

3.KNN方法的实现与初步应用

4.神经网络实现

项目实操

1.利用机器学习设计高体积模量高熵合金

2.训练机器学习模型预测多孔材料的催化性能

这两个实操项目同时穿插讲解如下内容

A1 机器学习材料与化学应用的典型步骤

A1.1 数据采集和清洗

A1.2 特征选择和模型选择

A1.3 模型训练和测试

A1.4 模型性能评估和优化

第三天

理论内容

1.决策树

1.1决策树的原理

1.2决策树分类

2. 集成学习方法

2.1集成学习原理

2.2随机森林

2.3Bosting方法

3. 朴素贝叶斯概率

3.1原理解析

3.2 模型应用

4.    支持向量机

4.1分类原理

4.2核函数

实操内容

1.决策树的实现和应用

2.随机森林的实现和应用

3.朴素贝叶斯的实现和应用

4.支持向量机的实现和应用

项目实操

1.使用实验数据训练机器学习模型预测金属有机框架材料中的气体吸附

2.通过机器学习方法筛选新型四元半导体化合物

这两个实操项目同时穿插讲解如下内容

A1 模型性能的评估方法

A1.1 交叉验证:评估估计器的性能

A1.2 分类性能评估

A1.3 回归性能评估

第四天

理论内容

1. 无监督学习

2.1 什么是无监督学习

2.2 无监督算法——聚类

2.3 无监督算法——降维

2. 材料与化学数据的特征工程

2.1分子结构表示

2.2 独热编码

实操内容

1.聚类实现和应用

2.T-SNE的实现和应用

3.PCA的实现和应用

4.层次聚类的实现和应用

5.K-means聚类的实现和应用

项目实操

1. 在机器学习技术的指导下加速钙钛矿材料的发现

2. 机器学习对CO2 封存的解释和预测

第五天

项目实操

1. 分子结构的表示与特征提取

2. 聚类、降维等无监督学习方法应用于分子特征处理

项目实操

1. Fe-N-C 催化剂及其氧还原性能的机器学习研究

2.  设计单原子催化剂的机器学习模型

第六天

项目实操

1.基于分子特征和逻辑回归预测分子性质

2. 基于分子特征的无监督学习综合应用

项目实操

1. 通过机器学习预测 NiCoFe 氧化物催化剂的活性

2. 利用基于成分的能源材料描述符进行机器学习模型的综合预测




专题二、深度学习辅助材料设计专题



第一天 (pytorch深度学习框架演练)

理论内容

材料数据库(material project, OQMD, AFLOW)

深度学习入门

图神经网络

材料特征工程

实操内容:

Pytorch深度学习框架演练

Pymatgen介绍及结构文件生成

Pymatgen生成相图,构建表面

Megnet,QM9,JDFT等规模化材料数据集的读取

爬虫获取二维数据集

爬虫获取会议文献和期刊文章的数据

第二天 (数据库的数据获取及演练)

实操内容

1. AFLOW数据库的数据获取

1.1 AFLOW数据库功能练习

1.2. 爬虫获取AFLOW数据库的数据

2. OQMD数据库

2.1 OQMD数据库功能练习

2.2 OQMD数据库的数据获取

实操内容

1. material project数据库

1.1 新版material project获取材料XRD、DOS图、能带图、吸收谱等数据

1.2 Pymatgen按照属性要求获取material project材料数据

2. 材料特征工程工具matminer演练

2.1 matminer获取材料数据集

2.2 matminer生成材料描述符演练

第三天 (结构数据驱动的高通量计算及案例)

实操和演示内容:

基于结构数据驱动的高通量计算:

1. pymatgen大批量结构获取

2. 基于pymatgen的计算文件生成

3. 大批量计算结果的获取与统计

实操内容:

基于数据驱动的功能材料开发案例一(晶体图神经网络实现材料属性预测):

1.用PYG搭建图神经网络(GCN、GAT)

2. 晶体图神经网络CGCNN模型代码原理

3. 利用晶体图神经网络实现材料属性预测

第四天 (基于数据驱动的多个功能材料开发案例及实操)

实操内容:

基于数据驱动的功能材料开发案例二(半导体材料):

1. 背景介绍

2. 数据获取

3. 构建特征

4. 传统机器学习和深度学习处理

5. 讨论与评测

实操内容:

1. 基于数据驱动的功能材料开发案例三(钙钛矿材料分类):

1.1 数据集获取

1.2 构建材料特征

1.3 机器学习训练

1.4 特征可解释性分析

2. 基于数据驱动的功能材料开发案例四(深度学习实现钙钛矿材料性能回归)

2.1 matminer生成材料特征

2.2深度神经网络实现钙钛矿属性预测

2.3传统机器学习与图神经网络预测结果对比

部分案例图片




讲师简介








请到「今天看啥」查看全文