【AI的代价:你每次提问ChatGPT用了多少电?】
人们对 #生成式AI# 充满期待,从提升工作效率到推动科学研究的进步。然而,尽管这项技术的迅猛发展推动了强大模型在多个行业的快速应用,随之而来的环境影响却仍难以量化,更不用说有效缓解。
训练拥有数十亿参数的生成式 #AI模型# ,如 #OpenAI# 的 GPT-4,需要强大的计算能力,这不仅消耗大量电力,增加二氧化碳排放,还会给电网带来额外压力。
此外,将这些模型部署到实际应用中,使数百万人能够在日常生活中使用生成式 AI 模型,并在开发完成后持续微调以优化性能,这些都将长期消耗大量能源。
训练、部署和微调生成式 AI 模型所使用的硬件依赖大量水资源进行冷却,这可能对市政供水系统造成压力,并影响当地生态系统。
此外,生成式 AI 应用的激增推动了对高性能计算硬件的需求,从而在制造和运输过程中间接增加了环境负担。
戳链接查看详情: AI的代价:你每次提问ChatGPT用了多少电?
人们对 #生成式AI# 充满期待,从提升工作效率到推动科学研究的进步。然而,尽管这项技术的迅猛发展推动了强大模型在多个行业的快速应用,随之而来的环境影响却仍难以量化,更不用说有效缓解。
训练拥有数十亿参数的生成式 #AI模型# ,如 #OpenAI# 的 GPT-4,需要强大的计算能力,这不仅消耗大量电力,增加二氧化碳排放,还会给电网带来额外压力。
此外,将这些模型部署到实际应用中,使数百万人能够在日常生活中使用生成式 AI 模型,并在开发完成后持续微调以优化性能,这些都将长期消耗大量能源。
训练、部署和微调生成式 AI 模型所使用的硬件依赖大量水资源进行冷却,这可能对市政供水系统造成压力,并影响当地生态系统。
此外,生成式 AI 应用的激增推动了对高性能计算硬件的需求,从而在制造和运输过程中间接增加了环境负担。
戳链接查看详情: AI的代价:你每次提问ChatGPT用了多少电?