专栏名称: 气象学家
【气象学家】公众号平台为您解读最新气象科研进展、分享气象实用编程技巧、追踪气象即时资讯。欢迎加入气象AI和Python交流群以及气象博士群!与5W+的专业人士一起交流互动!
目录
相关文章推荐
女神汇  ·  年轻女生必须懂的人生道理: ·  3 天前  
程序员的那些事  ·  普通人如何抓住 DeepSeek ... ·  2 天前  
程序员的那些事  ·  马斯克狂吹的 Grok 3 ... ·  2 天前  
51好读  ›  专栏  ›  气象学家

21级硕士生钱俊凯在黑潮人工智能集合预测研究方面取得重要进展

气象学家  · 公众号  ·  · 2024-05-07 21:08

正文

第一时间获取气象科研资讯

气象学家 公众号 交流群

加入


河海大学海洋学院 海洋观测与预报技术研究所21级硕士生钱俊凯在王强老师的指导下,率先建立了黑潮人工智能集合预测系统,探讨了该系统的物理可解释性,揭示了影响黑潮预测的关键因子,为提高黑潮预测水平提供了支撑。相关成果发表于海洋学高质量期刊《Journal of Physical Oceanography》和《Earth and Space Science》,我院21级硕士研究生钱俊凯为上述论文第一作者,王强教授为通讯作者,合作者包括广东海洋大学梁朋博士、国防科技大学王辉赞副研究员、自然资源部第二海洋研究所朱小华研究员、南京水利科学研究院施勇教授级高级工程师、我院伍艳玲副教授和硕士生彭苏琪。

黑潮是北太平洋强劲的西边界暖流,其流量和路径变化对我国及周边区域的天气气候、海洋环境、渔业资源和航运安全等有重要影响,因此其预测研究一直受到广泛关注。但是由于黑潮变异受多尺度物理过程非线性相互作用的影响,其预测结果仍然存在较大的不确定性,为了刻画该不确定性,同时提高黑潮预测技巧,本研究建立了黑潮人工智能集合预测系统,该系统的预测能力优于国际上主流的GOPAF(Global Ocean Physics Analysis and Forecast)数值预测模式,同时开展了此系统的可解释性分析,发现了其预测性能有明显优势的关键是该系统能够较好地表征上游黑潮流量变化和黑潮区中尺度涡的活动。此项研究为实现黑潮智能化集合预测奠定了基础,为提升黑潮预测水平提供了新思路。


RECRUIT



图1. 黑潮预测系统模型结构。输入为海面高度异常、经、纬向地转流速、海面温度、经、纬向风应力。




图2. 以2020年1月17日为起始预报时刻,在不同预测时长,黑潮集合预测系统的预测(中间)与AVISO观测(顶部)的黑潮路径及相应类型。概率密度函数(底部)表示黑潮路径类型的可能性。在预测时期,黑潮从跨越路径转变为泄漏路径。



图3. 当预测时长为3、7、11和14天时,黑潮入侵南海预测的敏感区域(a–d),及在该区域消除噪声相对不消除噪声的相对改善程度(e–h)。


我院海洋观测与预报技术研究所主要从事海洋智能预测、资料同化、可预报性、海气通量观测技术、海洋遥感观测反演技术等研究工作,已取得了一系列创新性成果,为提高海洋预报水平,保障国民经济建设和国防安全提供了科技支撑。

相关论文信息:

Qian, J., Q. Wang*, P. Liang, S. Peng, H. Wang, and Y. Wu, 2024: Deep learning–based ensemble forecast and predictability analysis of the Kuroshio intrusion into the South China Sea. Journal of Physical Oceanography, DOI:10.1175/JPO-D-23-0175.1.

Qian, J., Q. Wang*, Y. Wu, X. Zhu, and Y. Shi, 2023: Causality–based Deep learning forecast of the Kuroshio Volume Transport in the East China Sea. Earth and Space Science, 10, doi:10.1029/2022ea002722.

论文链接:

https://journals.ametsoc.org/view/journals/phoc/aop/JPO-D-23-0175.1/JPO-D-23-0175.1.xml

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022EA002722

编辑:蔡玉婷

审核:安杰晶

来源: 河海大学海洋学院






声明: 欢迎转载、转发。气象学家公众号转载信息旨在传播交流,其内容由作者负责,不代表本号观点。文中部分图片来源于网络,如涉及内容、版权和其他问题,请联系小编 (微信:qxxjgzh) 处理。


往期推荐
获取 ERA5/ERA5-Land再分析数据(36TB/32TB)
获取 全球 GPM降水数据,半小时/逐日(4TB)
获取1998-2019 TRMM 3B42逐日降水数据






请到「今天看啥」查看全文