人工智能一词诞生于20世纪50年代,有着60多年的发展历史,其间经过多次热潮与低谷。事实上,当前人们对于人工智能的各种讨论并不是什么新鲜事。例如,早在1996年,巴塔亚·弗里德曼(Batya Friedman)和海伦·尼森鲍姆(Helen Nissenbaum)撰写的《计算机系统中的偏见》一文中,就构建了一套评估和回应机器人不公平歧视问题的框架;而1980 年《纽约时报》的新闻标题就出现了“机器人正在抢走你的工作”。为此,我们不禁要思考,新一轮人工智能热潮与此前的人工智能浪潮到底有何区别?对此,一种普遍的认识是,得益于数据、算法以及算力三大要素的全面突破,人工智能成为数字时代世界各国竞相追逐的技术高地。无论人工智能如何百般变化,抓住智能三要素就抓住了机器智能的关键,这正是机器智能的奥秘所在。基于此,人工智能立法的第二层次为智能要素立法,具体围绕数据、算法以及算力三要素展开。
数据是人工智能的基础养料,没有数据就没有智能,因此,数据立法成为智能要素立法的基础问题。对此,各国高度重视数据立法。例如,欧盟在数据立法方面异常活跃,先后出台了《通用数据保护条例》《欧洲数据战略》《欧洲数据治理法案》《数字服务法案》《数字市场法案》等系列法案。《欧洲数据战略》就明确指出,“过去几年,数字技术已经改变了经济和社会,影响了所有的活动领域和欧洲人的日常生活。而数据处于这场转变的中心,并且还会有更多的改变。对于企业而言,数据是开发人工智能产品和服务必不可少的资源。”同样,美国也认识到了数据要素治理的重要性,相继发布了《大数据研究和发展计划》《联邦大数据研发战略计划》《联邦数据战略与2020年行动方案》等系列政策。考虑到大数据是算法的燃料,对数据的监管实际上从源头影响人工智能行业的发展。故此,数据立法对于人工智能的治理具有基础意义,具体则需要区分战略数据、人格数据以及生产数据三个层次,核心是协同推进数据的安全与利用。
与此同时,算法作为人工智能的本质,是机器智能的直接来源。如果说人工智能是一套解决问题或者完成特定任务的智能系统,那么算法就是这套智能系统的灵魂,决定着智能系统的解题思维与方法。当前,算法在社会经济发展和公共治理中扮演着重要角色,算法应用的巨大积极作用与负面影响亦日渐引人注目,算法挖掘引发的个人信息泄露、自动驾驶算法的事故风险、智能推荐算法带来的信息茧房、深度合成算法带来的虚假信息、商业算法实施的算法垄断以及算法黑箱、算法歧视等各种问题已经受到社会高度关注。基于此,针对算法进行专门立法成为数据立法之后的新领域,构成智能要素立法的又一个基础问题。对此,美国《2019年算法问责法案》《2022年算法责任法案》、加拿大《自动化决策指令》、新西兰《算法宪章》以及我国《关于加强互联网信息服务算法综合治理的指导意见》《互联网信息服务算法推荐管理规定》等都是算法立法的重要尝试。需要注意的是,算法与数据要素常常融合一体发挥作用,数据立法与算法立法也常常呈现犬牙交错的状态。例如,《互联网信息服务算法推荐管理规定》就多处涉及数据治理,而《个人信息保护法》也关注到了自动化决策的规制问题。
相较于算法和数据,算力问题受到了极大的忽视。2020年8月,美国安全和新兴技术研究中心发布报告《人工智能三要素以及对国家安全战略的意义》指出,“当前算力在很大程度上被大家所忽视,但实际上算力支撑了大量现代人工智能的进步。人工智能的大量进步不是通过让系统变得更像人类,或者通过向计算机传授更多的人类知识,而是通过赋予机器学习系统更强大的处理能力来自主学习。从这个角度来看,算力很可能是智能三要素中最为重要的部分。”实践中,各国围绕算力的明争暗斗一直在上演,如美国对于先进计算机芯片的严格管控就是人工智能时代算力政策的直接体现。因此,算力立法也是智能要素立法必不可少的组成部分。例如,《深圳经济特区人工智能产业促进条例》第三章“产业基础设施建设”特别提到算力基础设施、计算平台、算力资源等建设,强调了算力规制的重要性。《上海市促进人工智能产业发展条例》第13条、第14条也明确提出,加强算力基础设施规划,推动公共算力基础设施建设,实施“东数西算”工程,保障人工智能产业发展算力需求。总之,如何通过立法保障算力安全、可用、够用是智能要素立法的重要课题。