专栏名称: 数据分析
专注大数据,移动/互联网,IT科技,电子商务,数据分析/挖掘等领域的综合信息服务与分享平台。合作|约稿请加qq:365242293
目录
相关文章推荐
51好读  ›  专栏  ›  数据分析

干货 :用户细分的流程与方法

数据分析  · 公众号  · 大数据  · 2017-04-25 15:14

正文

【前言】 这是几年前写的一篇文章,其中有些案例说明与介绍可能有些过时,但为了保持原文的风格,这里就不做修改,后续写《从0开始搭建自己的数据运营体系》系列文章时再重新修改。


【正文】 通常,用户细分既不是分析的不是起点也不是分析的终点,而是伴随某个特定的分析而存在。精准化营销,需要用户细分,譬如你拥有同城的数十万消费者的资料数据库,随时为有需要的同城商家提供短信精确营销或其他网络营销服务;通过用户细分,或许你能发现新的目标市场和需求,淘米网阶段性的成功,不就是细分的典型吗?更多更充分的挖掘用户价值,你需要做用户细分。


用户细分分析流程


细分前的准备

为什么要细分用户?细分与不细分的差别大不大?细分之后能给我带来什么好处?细分之后的目标用户是什么?……多问几个为什么,自己了解的或不了解的,集思广益,会更靠谱一些。例如,某公司要做服饰新品推广,鉴于以往每次给会员群发短讯效果不理想,于是决定抽取部分会员数据细分,尝试精准营销,以达到降低成本、提高转化率的目的,那么这里的大致细分目的就是降低营销成本,提高相关转化率。


细分指标的确定

用户细分的指标有很多,譬如年龄、性别、职业、教育程度等人口属性指标;年费用户、包月用户等时间指标;华东地区用户、西部地区用户、华南地区用户等地理指标;除此之外还有其他很多很多细分的指标,细分指标的确定由细分目的和目标用户等相关因素决定。继续上面的引例,根据细分目的,该公司确定地理、人口、行为(以往购买物、活跃周期等)等为细分指标。


用户信息采集

常见的用户信息包括公司日常运营所积累的用户,通过企业相关调研活动所采集的用户信息以及第3方数据,当然还有很多的公司可能通过各种渠道去购买相关用户信息。


制定细分标准

细分标准并没有一个定型,这里本人暂且将其归类为事前定义和事后定义两种。这里事前细分是指譬如时间、人口属性等细分明确或是根据以往成熟经验模型(案例)可以明确细分的标准准则,而事后细分则是指用户类型起初并没有具体的特征形态,根据多个数据特征变量利用聚类等统计分析方法而定义的细分标准。例如常见的RFM模型客户分类就是事前细分标准的一种。


细分用户描述

用户细分完成后,自然给其一个代表其特征的名字,并对其判别因素及具体特征进行详细的说明。例如,许多淘宝卖家都将其用户根据四象限的方法,用成交量、PV、UV等因素分为产品混乱型客户、优质客户、单品为王的客户和问题客户。








请到「今天看啥」查看全文