随着数据科学领域的招聘信息越来越多,范围也越来越广。Datacamp根据最新的数据科学相关招聘信息,全面的了解各个行业之间数据科学领域每个职位角色之间的差异,以及所赋予的工作职责。
最主要分为以下几个职位: 数据科学家、数据分析师、数据架构师、数据工程师、统计学家、数据库管理员、业务数据分析师、数据产品经理。 下面通过信息图区分每个职位的角色介绍、必备语言技能。
数据科学家
数据科学家
角色/任务:
清洗,管理和组织(大)数据
必备语言:
R,SAS,Python,Matlab,SQL,HivePig,Spark
技能和特长:
分布式计算
预测模型
故事讲述和可视化
数学\统计,机器学习
数据分析师
数据分析师
角色/任务:
收集,处理和执行统计数据分析
必备语言:
R, Python, HTML,Javscript,C/C++,SQL
技能和特长:
电子表格工具(例如Excel)中
数据库系统(SQL和基于NO SQL)
通信可视化
数学,统计,机器学习
数据架构师
数据架构师
角色/任务:
创建数据管理系统进行整合,集中,保护和维护数据源
必备语言:
SQL,XML,HIVE,PIG,SPARK
技能和特长:
数据仓库解决方案
深入了解数据库体系结构
提取thansformation和加载(ETL),电子表格和BI工具
数据建模
系统开发
数据工程师
数据工程师
角色/任务:
开发,建设,测试和维护架构(如数据库,以及较大规模的处理系统)
必备语言:
SQL,Hive,Pig,R,Mtlab,SAS,SPSS,Python,Java,Ruby,C++,Perl
技能和特长:
数据库系统(SQL和基于NO SQL)
数据建模ETL工具
数据API
数据仓库解决方案
统计学家
统计学家
角色/任务:
收集,分析和解释,定性和定量的数据统计理论和方法