专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
宝玉xp  ·  1. ... ·  昨天  
量子位  ·  OpenAI版《Her》全量来袭:实时视频对 ... ·  3 天前  
黄建同学  ·  一本在线的免费机器学习电子书↓ ... ·  3 天前  
宝玉xp  ·  说好的 Sora ... ·  4 天前  
林小奇笔记  ·  强者心态 ·  4 天前  
林小奇笔记  ·  强者心态 ·  4 天前  
51好读  ›  专栏  ›  机器学习研究会

【学习】从贝叶斯概率角度看深度学习

机器学习研究会  · 公众号  · AI  · 2017-06-06 19:11

正文



点击上方“机器学习研究会”可以订阅哦
摘要
 

转自:爱可可-爱生活

论文《Deep Learning: A Bayesian Perspective》摘要:

Deep learning is a form of machine learning for nonlinear high dimensional data reduction and prediction. A Bayesian probabilistic perspective provides a number of advantages. Specifically statistical interpretation and properties, more efficient algorithms for optimisation and hyper-parameter tuning, and an explanation of predictive performance. Traditional high-dimensional statistical techniques; principal component analysis (PCA), partial least squares (PLS), reduced rank regression (RRR), projection pursuit regression (PPR) are shown to be shallow learners. Their deep learning counterparts exploit multiple layers of of data reduction which leads to performance gains. Stochastic gradient descent (SGD) training and optimisation and Dropout (DO) provides model and variable selection. Bayesian regularization is central to finding networks and provides a framework for optimal bias-variance trade-off to achieve good out-of sample performance. Constructing good Bayesian predictors in high dimensions is discussed. To illustrate our methodology, we provide an analysis of first time international bookings on Airbnb. Finally, we conclude with directions for future research.


链接:

https://arxiv.org/abs/1706.00473


原文链接:

http://weibo.com/1402400261/F6vqgAWU5?type=repost#_rnd1496737230595

“完整内容”请点击【阅读原文】
↓↓↓