Current power grid infrastructure was not designed with climate change in mind, and, therefore, its stability, especially at peak demand periods, has been compromised. Furthermore, in light of the current UN’s Intergovernmental Panel on Climate Change reports concerning global warming and the goal of the 2015 Paris climate agreement to constrain global temperature increase to within 1.5–2 ℃ above pre-industrial levels, urgent sociotechnical measures need to be taken. Together, Smart Microgrid and renewable energy technology have been proposed as a possible solution to help mitigate global warming and grid instability. Within this context, well-managed demand-side flexibility is crucial for efficiently utilising on-site solar energy. To this end, a well-designed dynamic pricing mechanism can organise the actors within such a system to enable the efficient trade of on-site energy, therefore contributing to the decarbonisation and grid security goals alluded to above. However, designing such a mechanism in an economic setting as complex and dynamic as the one above often leads to computationally intractable solutions. To overcome this problem, in this work, we use multi-agent reinforcement learning (MARL) alongside Foundation – an open-source economic simulation framework built by Salesforce Research – to design a dynamic price policy. By incorporating a peer-to-peer (P2P) community of prosumers with heterogeneous demand/supply profiles and battery storage into Foundation, our results from data-driven simulations show that MARL, when compared with a baseline fixed price signal, can learn a dynamic price signal that achieves both a lower community electricity cost, and a higher community self-sufficiency. Furthermore, emergent social–economic behaviours, such as price elasticity, and community coordination leading to high grid feed-in during periods of overall excess photovoltaic (PV) supply and, conversely, high community trading during overall low PV supply, have also been identified. Our proposed approach can be used by practitioners to aid them in designing P2P energy trading markets.
Keywords
Peer-to-peer market
Community-based market
Dynamic pricing
Multi-agent systems
Multi-agent reinforcement learning
Proximal Policy Optimisation