专栏名称: 算法与数学之美
从生活中挖掘数学之美,在实践中体验算法之奇,魅力旅程,从此开始!
目录
相关文章推荐
九章算法  ·  寒潮来袭!微软开启“清仓式”裁员! ·  4 天前  
九章算法  ·  硬核!一周刷爆LeetCode,算法大神耗时 ... ·  4 天前  
算法与数学之美  ·  人工智能科学家何恺明,2003年的广东省高考 ... ·  3 天前  
算法与数学之美  ·  工信部计算机视觉设计开发工程师认证——成就A ... ·  3 天前  
算法与数学之美  ·  “她1年发表10篇论文” ... ·  3 天前  
51好读  ›  专栏  ›  算法与数学之美

数学的威力有多大

算法与数学之美  · 公众号  · 算法  · 2017-02-27 22:02

正文

数学的威力有多大

来源:第九阅览室 王握文 徐莎  http://blog.sina.com.cn/s/blog_6aff4566010162w2.html

编辑:Gemini

数学的威力有多大?国防科技大学理学院用实践给出了最好的答案——他们创造性地运用一个个公式、算法、方程,破解制约部队战斗力提升的现实问题,推动了战斗力生成模式转变。

一个公式改变了一支部队的执勤模式

“雷达站为什么要建在偏远山区?”最初,当国防科大理学院数学教授提出这个问题时,不免让人觉得有点“太业余”了。

一般来说,担负测控任务的部队,运用的是“测距+测速”国际通用的测控方法,将雷达站建在大山中正是因为“测距”的需要。

“如果抛开测距,仅通过测速来定位不行吗?”不行。国际上早有结论:仅凭速度数据无法计算出飞行器的具体位置。

然而,该院数学教授却“异想天开”:如果能突破这一传统理论,不仅可以改变部队传统的测控方法,还能让官兵搬出偏远山区。

不久,部队送来一次导弹试验的测量参数,请他们帮助进行数据分析处理。当他们将几组测距、测速数据放到计算机中进行运算时,发现其中一个测距雷达并未测到应该测到的数据。

怎么办?数学教授们又想到了抛开测距定位的创新思路。于是,他们尝试性地将一个相应的测速参数替代这个测距参数,再算。奇迹出现了——得出了准确的弹道精度。

举一反三,他们将这一创新成果应用于一支测控部队,改变了传统雷达测控体制。如今,这支部队的测距雷达站全部搬出偏远山区,遂行测控任务时,官兵们只需用一台车载测速雷达到达指定地点就可以了。

一个方程将卫星图像质量提高30%

卫星翱翔太空,需要有一双明察秋毫的慧眼。但以前我国遥感卫星的图像质量却有待改进。

一个偶然的机会,该校理学院的数学专家了解到这一情况。要解决图像质量问题,首先要了解成像原理。于是,团队成员抱来一大摞成像方面的书籍进行系统学习,又到卫星研制单位、用户单位及各相关部队进行实地调研。渐渐地,他们掌握了遥感成像的原理和特点。

专家们将卫星图像质量不高的问题,描述成数学语言,并将误差扩散过程转换为一个二维方程,然后对这个方程进行求解,从而使受到噪声斑点污染的图像恢复本来面目。

理论上看似行得通,实践中却难以实现。攻关一度陷入困境,但他们没有放弃。经过分析他们发现,光学图像处理方法是将噪声斑点抹掉,而雷达图像的噪声斑点抹掉后,图像信息的保真度不高,质量自然也就不清晰,传统的二维方程也就无法求解。

于是,他们先对二维方程进行改造,建立起一个全新的方程。就是这个方程,一举将图像质量提高了30%,达到国内领先、国际先进水平。

一个算法挽救一台武器装备

2008年,某型号装备在演示验证中,目标测量数据出现严重误差,使该型号装备研制陷入困境。

提起“数据”这个词,研制单位立即想到了该院数据分析技术创新团队。求援电话打过去,3名教授犹如战士接到了出征的命令,立即动身赶赴试验现场。

这是一个十分棘手的问题,国内研究单位攻关十余年未能取得突破,国际上也没有现成方法可供参考。

专家们深知,如果问题得不到解决,装备研制人员多年攻关的成果将功亏一篑。3名数学专家在条件艰苦的试验场安营扎寨,心无旁骛开始攻关。

60多个日日夜夜,经历数不清的挫折和失败,他们终于从纷繁复杂的数据中,锁定了影响目标测量预报的关键参数,找到了解决问题的突破口,并创造性地提出了一个新的算法,彻底解决了数据预报误差问题,让这台武器装备获得“新生”。

一个软件将定轨精度提高一个量级

分布式卫星的定轨精度,是衡量一个国家空间技术发展水平的重要标志。由于我国在这方面起步较晚,定轨精度与国际先进水平相比还有差距。

为改变这一现状,我国组织多领域专家经过10余年联合攻关,各分系统有关定轨精度的技术指标取得了重大突破。然而,当总体单位将各分系统“组合”起来进行整体试验时,却出现了令专家们惊诧的结果:精度与当初的设计要求相差甚远。

问题出在哪里?参与联合攻关的该校理学院一位年轻博士突生灵感。经过连续几天的试验数据分析,他隐隐约约地发现:精度误差随着时间呈一定规律性变化。

他像哥伦布发现新大陆一样兴奋,立即着手进行数据误差分析,并将时间处理程序嵌入到一个相关软件中,经过实验验证后,再用这个改进后的软件进行有关数据处理时,精度完全达到要求。

研制单位大喜过望,按照他改造的这个软件,用来校准卫星时钟精度和进行卫星轨道参数处理,难题迎刃而解,精度被提升了一个量级。

往期经典文章回顾


  1. 高等数学、线性代数、概率论与数理统计、几何学这些知识可以用来干什么?主要应用有哪些?

  2. 线性代数的本质--对线性空间、向量和矩阵的直觉描述

  3. 理解矩阵背后的现实意义

  4. 数学系和物理系学生有什么差别?

  5. 线性代数的本质

  6. Leibniz 如何想出微积分?(三)

  7. PCA的数学原理

  8. 零除以零在数学中有意义吗?

  9. 算法|人人都该了解的十大算法

  10. 对傅里叶级数的理解