import pandas as pd import numpy as np import matplotlib.dates as mdates import matplotlib.pyplot as plt import matplotlib.ticker as ticker from matplotlib import rcParams from matplotlib.path import Path from matplotlib.patches import PathPatch
# Remove ticks from axis Y ax.tick_params(axis='y', length=0)
现在我们在 X 轴上的第一个刻度附近添加一个美学细节 - 年份。我们还使刻度标签的字体颜色更浅。
# Add year to the first date on the axis def custom_date_formatter(t, pos, dates, x_interval): date = dates[pos*x_interval] if pos == 0: return date.strftime('%d %b \'%y') else: return date.strftime('%d %b') ax.xaxis.set_major_formatter(ticker.FuncFormatter((lambda x, pos: custom_date_formatter(x, pos, dates=dates, x_interval=x_interval))))
# Ticks label color [t.set_color('#808079') for t in ax.yaxis.get_ticklabels()] [t.set_color('#808079') for t in ax.xaxis.get_ticklabels()]
现在它看起来干净又漂亮。我们只需要使用任何编辑器(我更喜欢 Google Slides)添加一些细节 — 标题、圆角边框和一些数字指示器。
重现可视化的完整代码如下:
import pandas as pd import numpy as np import matplotlib.dates as mdates import matplotlib.pyplot as plt import matplotlib.ticker as ticker from matplotlib import rcParams from matplotlib.path import Path from matplotlib.patches import PathPatch
# Remove ticks from axis Y ax.tick_params(axis='y', length=0)
# Add year to the first date on the axis defcustom_date_formatter(t, pos, dates, x_interval): date = dates[pos*x_interval] if pos == 0: return date.strftime('%d %b \'%y') else: return date.strftime('%d %b') ax.xaxis.set_major_formatter(ticker.FuncFormatter((lambda x, pos: custom_date_formatter(x, pos, dates=dates, x_interval=x_interval))))
# Ticks label color [t.set_color('#808079') for t in ax.yaxis.get_ticklabels()] [t.set_color('#808079') for t in ax.xaxis.get_ticklabels()]
# Gradient numeric_x = np.array([i for i in range(len(x))]) numeric_x_patch = np.append(numeric_x, max(numeric_x)) numeric_x_patch = np.append(numeric_x_patch[0], numeric_x_patch) y_patch = np.append(y, 0) y_patch = np.append(0, y_patch)