今年投稿的latex模版:
https://github.com/ICLR/Master-Template/raw/master/iclr2025.zip
官网:
https://iclr.cc/Conferences/2025/CallForPapers
投稿系统:
https://openreview.net/group?id=ICLR.cc/2025/Conference
投稿交流群:
关键时间线:
投稿系统开启:24.09.13
摘要截稿:24.09.27(摘要截稿后仍可修改文章)
全文截稿:24.10.01
Rebuttal:24.11.12-24.11.27
结果公布:25.01.22
尼谟总结的重要事项:
1.摘要截稿后不可修改作者及其排序。
2.
今年的新规定1:正文必须介于6到10页(含)之间(单栏),此限制将严格执行,正文出现第11页的论文将desk rejected。
camera ready同样适用此限制。
3.参考文献不包含在页数限制中,可以无限页。作者可提供附录可以无限页的附录(截稿时间同正文),不过审稿人不被要求一定要看附录。
4.今年的新规定2:
所有出现在3篇或以上投稿论文中的作者必须担任至少 6篇论文的审阅者。
此类别的作者如果未能在Rebuttal期间完成审阅,其论文可能会被拒
(担任ICLR'25的AC、SAC或其他组织主席则无需满足审阅要求)。
此外,所有投稿必须至少有一位注册审阅至少3篇论文的作者。注册审稿人应具备审稿资格,如果他们在之前的ICLR/NeurIPS/ICML会议或同等期刊上至少发表过一篇被接受的出版物,他们就具备审稿资格。如果所有作者均不具备此定义的资格,则他们可免于此要求(写得像三国杀技能描述一样的要求)。
5.尼谟对于首次投稿ICLR的新人的提醒:不同于大部分会议,ICLR的论文在Rebuttal中审稿人和作者的交互将在OpenReview网站上公开。
6.ICLR'25对大模型辅助的要求:
允许使用LLM作为通用辅助工具。
作者和审阅者应了解,他们对以自己的名义撰写的内容负全部责任,包括由LLM生成的内容,这些内容可能被视为抄袭或科学不端行为(例如捏造事实)。LLM不具备作者资格。
征稿主题(看不看无所谓):
We consider a broad range of subject areas including feature
learning, metric learning, compositional modeling, structured
prediction, reinforcement learning, uncertainty quantification and
issues regarding large-scale learning and non-convex optimization, as
well as applications in vision, audio, speech, language, music,
robotics, games, healthcare, biology, sustainability, economics, ethical
considerations in ML, and others.
A non-exhaustive list of relevant topics:
-
unsupervised, self-supervised, semi-supervised, and supervised representation learning
-
transfer learning, meta learning, and lifelong learning
-
reinforcement learning
-
representation learning for computer vision, audio, language, and other modalities
-
metric learning, kernel learning, and sparse coding
-
probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
-
generative models
-
causal reasoning
-
optimization
-
learning theory
-
learning on graphs and other geometries & topologies
-
societal considerations including fairness, safety, privacy
-
visualization or interpretation of learned representations
-
datasets and benchmarks
-
infrastructure, software libraries, hardware, etc.
-
neurosymbolic & hybrid AI systems (physics-informed, logic & formal reasoning, etc.)
-
applications to robotics, autonomy, planning
-
applications to neuroscience & cognitive science
-
applications to physical sciences (physics, chemistry, biology, etc.)
-
general machine learning (i.e., none of the above)
【
轻松参会
】为所有