来源:投资人说(ID:touzirenshuo)整理分享。
01 人工智能时代正在到来
每当一个事物兴起的时候,随之而来的就是大量的观点与推测,其中最受欢迎的往往是那些最大胆的;而后每增加一个论据,都会让我们对这个观点更加深信无疑。就像从Alpha Go战胜李世石后,人工智能在舆论中强势回暖,而后李彦宏在世界互联网大会上的言论,也再度加强了人们对它的关注。
不仅百度,马化腾在2015年6月的演讲中也说道:人工智能是我最想做的事情。马云也在2015年5月内部信中写道:未来三十年云计算、大数据、人工智能等技术将会让无数的梦想成真。
目前国际互联网巨头纷纷入场, 亚马逊的 Alexa、苹果的 Siri、微软的 Cortana,作为人工智能的第一块敲门砖,已经被较为广泛的使用;搜索、翻译、地图、无人车,深度学习的影子无处不在,人工智能正在重构人类的生活。
同时,伴随互联网的高速发展和底层技术的不断进步,人工智能所需的「能源」正在不断完善。
1)数据量:
2000年至今,互联网及移动互联网的高速发展使得数据实现了量的积累,据IDC预测,2020年全球的大数据总量将为40ZB,其中有七成将会以图片和视频的形式进行存储,这为人工智能的发展提供了丰厚的土壤。
2)深度学习算法:
多伦多大学教授Geoffrey Hinton(致力于神经网络和深度学习研究)的学生在业内知名的图像识别比赛ImageNet中利用深度学习的算法将识别错误率一举降低了10%,甚至超过了谷歌,深度学习进而名声大噪。2015年,微软亚洲研究院视觉计算组在该项比赛中夺冠,将系统错误率降低至3.57%,已经超过了人眼。
3)高性能计算:
GPU响应速度快、对能源需求低,可以平行处理大量琐碎信息,并在高速状态下分析海量数据,有效满足人工智能发展的需求。
4)基础设施成本:
云计算的普及和GPU的广泛使用,极大提升了运算效率,也在一定程度上降低了运营成本。IDC报告显示,数据基础设施成本正在迅速下降,从2010年的每单位9美元下降到了2015年的0.2美元。
与此同时,巨头和创业公司也相继投入资源和成本进行商业化探索,但技术本身尚有足够大的成长空间,当前仍处于早期阶段。
02 人工智能带来的机会
我们看到,目前人工智能领域的企业主要集中于以下三个层面:
基础层:
关注人工智能基础支撑硬件或数据平台基础;
技术层:
包括有关机器识别与深度学习的算法和技术设计;
应用层:
包括通用应用和行业垂直应用等。
*图片来源:易观智库
在极客帮创投创始合伙人蒋涛看来,
大公司在这三个层面赢家通吃,而小公司只能依靠单点突破,以及在传统行业优势上进行突围。
大公司(100亿市值以上)的主战场在于争夺未来人工智能的制高点,这分为两个方向,
第一个方向是争夺未来人工智能的入口
,包括家居的入口、汽车的入口等等,这些未来的入口扮演着比较重要的交互作用,例如Google的语音交互,百度的百度大脑。
第二个方向是生态系统的竞争
,入口很容易切换,那么就要通过生态提高切换成本,通过开源技术,通过推荐算法,当然也要依靠于物联网的延伸与发展。而像京东、当当这类的大公司,他们最大的竞争力在物流和海量的数据上,所以在技术上可以购买,但并不那么着急。
小公司的主战场在垂直领域的应用,通过人工智能的浪潮来改进尚未完成移动化的行业。
例如金融行业,它在人工智能时代的市场规模、空间应该会比移动时代更加广大;例如企业级的服务,现在在国内处在非常落后的状态。蒋涛说:“相对来说容易做的事情已经做完了,剩下的事情都是硬骨头,但我相信还会有跑出来大的公司,当然有数据的公司会更容易跑出来。”
实际上,目前人工智能的应用和落地方式还极其有限。几乎所有人工智能的最新进展都是通过一种类型来完成:输入数据(A)快速生成简单的回应(B),举个例子:
这么一个简单的输入 A 和输出 B 将改变许多行业,而构建由 A→B 的技术被称为监督学习。A→B 系统发展速度很快,这其中深度学习很大程度上受大脑的工作原理启发。但A→B 系统距离科幻片中存在情感的机器人还差得很远,人类的智能也远远比 A→B 系统高级得多。
那么 A→B 这个系统能做什么?关于其颠覆性影响,这里列一个法则:
如果人类进行一项思考时间少于一秒的任务,那么不远的将来或许我们能用人工智能自动化完成这项任务。
*吴恩达,百度首席科学家,人工智能和机器学习领域国际上最权威的学者之一。
百度首席科学家吴恩达表示,人们在人工智能应用方面已经做了很多有价值的研究:在监控视频中检测可疑行为、汽车即将撞到行人时自动急刹车、自动删除网上的黄暴内容,上述任务均可在一秒之内完成。当然,这些技术更适合与大的产业业务相结合。
互联网实现了基础设施可以跑、数据可以连,人工智能其实在另外一个维度上提升了我们整个的应用效率,它试图解决的是生产资料及劳动力上的问题。人工智能是产业智能化升级的强大工具,正在改变包括通信、医疗、教育等在内的所有领域。
通信网络一般有两大任务,一个是网络的控制,一个是网络的管理和维护。网络控制就是怎么样在一个通信网络中进行有效地资源调度,从而提高网络的使用效率,更好地服务于用户。网络管理和维护就是准确理解网络需求,进行最优化的网络设计及部署;并能够实时感知网络状况,及时排除故障。而人工智能会使得未来的通信网络越来越不需要人,整个网络的控制基本是全自动的,只需要很少的专家参与就可以把整个通信网络的事情全部搞定。
李彦宏在介绍百度人工智能在医疗领域的应用时,提到四个层次,分别是O2O服务、智能问诊、基因分析与精准医疗、新药研发。
第一个层次:百度医生现在已经有50万的医生参与咨询,累计有800万人通过百度医生平台来获得相关的医疗服务。
第二个层次:在智能问诊的小测试中,百度医生的诊断和北大国际医院的医生诊断,在80%的情况下是一致的,而且它可能在一些比较罕见的情况下表现更好。当然这些技术除了对大量的医疗知识进行机器学习外,也需要对病人表述的理解能力不断地提升。
第三个层次:用基因来进行治病,最大的一个问题是大多数已知的基因导致的疾病都是单基因导致的,而这些病又大多是罕见病,大多常见病是多基因导致的。通过大量的计算,人工智能可以帮助医生搞清楚一个病是由哪些基因共同作用导致的。
第四个层次:今天已知的、有可能形成药的小分子化合物大概是10的33次方那么多,这可能比全宇宙所有的原子加起来还要多。这样的一个量,怎样用它的分子式跟产生疾病的蛋白去合在一起,用来治病?怎样对未知的那些分子式进行大量的筛选,找到有效的新药?计算机科学、人工智能能够在这方面有所帮助。
教育行业其实是一个试错成本非常高的行业,谁也不会拿孩子的成绩来做实验。医疗行业同样如此,的确人工智能可以在图像识别及诊断分析上给出建议,不过一旦出现医疗纠纷或因此而耽误了病人的病情,责任由谁来承担。
另一个方面,这两个行业决策链条很长。它涉及的利益方很多,教育行业有学校、老师、家长、学生,在医疗行业就是医院、医生、病人。同时,这两个行业又是国家相对高度管制的行业。
德联资本合伙人贾静表示,无论教育及医疗这两个行业有多少困难,资本还是非常关注。因为为教育及健康买单的用户,付费意愿及能力都非常强。这条路虽然曲折,但前途特别光明。
实际上,教育行业要比医疗行业走得更靠前一些。目前在教育行业,已经有许多人工智能技术应用。比如人工智能深度参与到教、学、练、测、评的环节中,加快个性化教学的进程。但这需要积累大量真实有效的数据,谁能在整个教育环节积累到足够多的数据就有可能跑到前面。
另一方面,教育行业一直想解决的问题是如何在供给侧做到规模又经济,老师该怎么培训和管理。那么人工智能介入教育行业,以前由老师来解决的问题,可能70%-80%由人工智能来解决。这就从生产成本上进行了改革,根本上解决了生产资料和劳动力的分配问题,而不只是交易成本最小化。所以人工智能带给行业的变革,要比移动互联网大得多。
几年前出来的一些人工智能公司,技术发展已经相对成熟,比如科大讯飞,当年刚出来做的产品并不是那么流畅,但现在做得已经不错了。所以,技术差别不大的情况下,想要从技术上突破还是比较困难的,那就需要找到一个能够激发用户极致体验的点,看用户的体验是不是超过了用户对产品的期待。