(a)使用IILS选择后的新图像排版。新的排版图像被分为三个部分(两个红框的区域,代表关键图像所在的区域)。显然,与(c)相比没有无效图像(标有橙色下划线)。排版第一部分开头的五个小框依次显示:1)肺窗条件下结节的最大横截面切片的图像(WW:1500; WL:-500),2)具有长径和短径测量数据的图像,3)纵隔窗口条件下的结节图像(WW:350,WL:50),4)结节的冠状图像重建,5)结节的矢状图像重建。第二部分是在纵隔窗口条件下每层间隔的一组图像。最后一部分是一组薄层肺组织图像,大约分为六层。另一个便利是,片子上任一单元格中的每个图像都可以通过其切片ID进行跟踪,并通过双击它来重定向到图像集中的原始位置。还自动生成与片子相关的可视化结构报告。有关详细信息,请参见视频2。
(b):如果患者没有肺结节,IILS给出的排版和报告将与传统系统给出的相似。
(c):使用传统的手工排版形式,表格分为两部分。 前部包括纵隔组织图像,后部是肺组织图像。 传统排版格式的主要问题是缺少关键图像,各种无效图像(一些带橙色下划线的图像),以及缺少链接功能。 相关报告填充了文本,没有生成结构化报告。
2.6 自动排版
通过将固定输出过程分成以下子任务来执行自动排版:1,验证; 2,输出。在验证任务中,我们的程序首先处理最重要的结节,生成五个放大的输出图像,聚焦在结节上,同时突出显示矩形,标明肺窗形式的结节位置,长径测量,纵隔窗 和两个方向透视。 五个输出图像放置在第一行,然后是30个纵隔窗口图像,其余的为肺窗口。 具体而言,第一部分五个网格是单个结节的自动排版,具有最高的恶性概率风险,这可由AI预测。 五张图片也可以由放射科医师验证和覆盖。 自适应排版工具的输出包括两个电子排片和一个由四组图像组成的结构化报告。
与传统报告的比较,IILS提供了以下信息:i)基本信息显示:患者信息,检查信息,放射科医师信息等。ii)结果(来自AI预测和放射科医师的双重确认):标准化描述肺结节图像,包括结节位置,形态和密度,图像信息的层数,结节长径,体积,平均CT值,以及结节的恶性概率。此外,我们为放射科医师预留了足够的空间,可以为其他病变编写定期报告。 iii)诊断感想:由放射科医师撰写的诊断建议。肺部全部范围的适应性是主要关注点,其意味着五个图像是否附在第一组,即 一组显示结节的五种形式图像具有最高的AI预测得分为恶性,符合我们的预设的将受到高度重视。验证后,可以将排片导出为可打印格式,以便为放射科医师和患者提供可视化信息,同时自动生成结构报告。
我们还推断一个好的排版系统主要包括以下三个主要内容:1)任何可靠,客观的测量数据的所有关键图像; 2)显示肿瘤特征的一系列图像,包括形状,数量,密度,大小,增强,多角度观察和后续比较; 3)胸部纵隔窗和肺窗图像连续显示(图5a-b)。 此外,我们手工显示当前排版形式的图片,这在日常工作中作为比较非常普遍(图5c)。
2.7 结构化报告
结构化报告生成程序旨在完成常见CT扫描场景中的完整工作流程(补充图S2)。与传统报告的比较,我们计划为放射科医师和患者提供图像和结果的可视化。该计划主要通过以下三个步骤进行:1,收集资源;2,渲染图像;3,输出。我们现在将详细描述每个步骤。为了收集资源,我们需要在我们的程序中加载多个资源,包括DICOM图像集、AI预测结节、患者/医院信息,以及捕获放射科医师的结果和诊断感想。收集必要的资源后,我们继续进行渲染部分。该程序将首先根据其重要性对结节进行排序(由AI定义,但可以由操作员覆盖),然后在相应的图像上使用矩形框渲染每个结节。该程序还放大了图像并设置其中心,重点放在结节本身。渲染和转换后,将触发特殊事件侦听器以通知程序捕获渲染数据。最后,程序生成预定义的可打印输出。
2.8 定量和统计分析
ROC曲线绘制了真阳性率(TPR,灵敏度)与假阳性率(1- 特异度)的关系曲线。通过将正确标记的恶性结节的总数和正确标记的良性结节的总数分别除以测试图像的结节总数来确定灵敏度和特异度。连续变量被描述为平均值±标准误差(SEM),并且分类变量被表示为诸如良性/恶性(B / M)的特征。将传统图像排版组与智能系统组和正常对照组之间的临床特征通过Mann-Whitney U检验,卡方检验或Fisher精确检验进行比较。使用双样本Mann-Whitney U检验比较传统排版组与智能布局组和正常对照组之间的差异。Kappa统计用于衡量两个评估者之间的一致性程度,即AI和人类专家。kappa值至少为0.75表示良好的一致性。 然而,我们认为较大的kappa值,例如0.90,是优选的。双尾P值<0.05被认为具有统计学意义。