不可再生石化资源的过渡消耗和石油基塑料制品难以降解带来的环境问题对全球可持续发展带来诸多挑战,开发利用生物质基新材料有望成为解决该困境的有效途径。纤维素是自然界储量和产量最为丰富的生物质之一,利用纤维素构建高性能生物质结构材料可缓解石化资源消耗,减少环境负担,促进可持续发展。近年来,纳米纤维素(
CNFs
)轻质高强的特点受到广泛关注,其结晶区的理论拉伸强度为
1.6~6.6 GPa
,模量为
56~220 GPa
,而密度(
1.5~1.6 g cm
-3
)仅为钢铁的
1/5
,因此,以纳米纤维素作为基本单元构建轻质高强块体材料具有极大的潜力。然而,由于纳米纤维素保水值高,难以干燥成型,严重阻碍了纳米纤维素结构材料的发展。传统的纳米纤维素分散液脱水方法包括抽滤、蒸发、热压、喷雾干燥、冷冻干燥和超临界流体干燥等,这些方法适用于制备薄膜和气凝胶,但难以制备具有较大厚度、致密且可模塑成型的块体材料。
为有效解决上述问题,
武汉大学
陈朝吉教授
团队联合广东工业大学
邱学青教授
和华南理工大学
方志强副研究员
开展了一系列深入研究。
创新性地提出在超分子尺度屏蔽亲水基团、减少亲水晶面暴露和缩短纳米纤维素间距等策略协同降低保水值,通过压滤方式实现快速脱水,进一步采用热压模塑成型构筑轻质高强块体材料。利用先进表征技术研究快速脱水机理;综合分析评估纳米纤维素块体材料的力学性能、水稳定性、热稳定性、阻燃性、可降解性和循环利用性等服役特性,全方位评定纳米纤维素块体材料的性能、环境效益以及替代传统石化基塑料的潜力。
相关研究成果近日以题为“
Supramolecular Scale Hydrophilicity Regulation Enabling Efficient Dewatering and Assembly of Nanocellulose into Dense and Strong Bulk Materials as Sustainable Plastic Substitutes
”的论文发表在《
Ad
vanced materials
》上。武汉大学博士后周杰、
2022
级硕士生马一凡为论文共同第一作者,武汉大学陈朝吉教授和华南理工大学方志强副研究员为论文共同通讯作者。值得注意的是,武汉大学陈朝吉教授课题组在木质生物质再设计及功能化利用方面持续深耕,在
2
025
年
1
月刚过去的两周连续在《
N
ature
C
ommunications
》、《
Ad
vanced materials
》(
2
篇)、《
S
cience
B
ulletin
》发表一系列生物质基功能材料研究成果。
如图
1
所示,为了解决纳米纤维素分散液脱水困难、难以干燥成型的挑战,这项研究工作通过添加乳酸,在超分子尺度屏蔽亲水基团、减少亲水晶面暴露和缩短纳米纤维素间距,成功降低纳米纤维素保水值,实现快速脱水和模压成型。纳米纤维素块体材料展现出透明、轻质高强、水
/
热稳定性好、可模塑加工、阻燃和可降解等优良特性,是具有广阔应用前景的石油基塑料替代品。
图
1.
超分子尺度亲水性调控助力实现纳米纤维素的快速脱水和构筑高性能块体结构材料
作者利用显微技术、
Zeta
电位、流变学、分子间相互作用(
AFM
)、石英晶体微天平(
QCM-D
)和
X
射线衍射(
XRD
)等手段,深入探究纳米纤维素快速脱水的机理。如图
2
所示,添加乳酸(
LA
)后,乳酸电离的
H
+
降低了
CNF
表面的电负性,静电斥力减小到不足以抵抗氢键和范德华吸引力,导致
CNF
絮聚,形成
100
微米左右的凝胶微粒,从而降低
CNF
的保水值。实验表明,
Zeta
电位、粘度、溶液稳定性和保水值均大幅降低。形成凝胶微粒后,可采用压滤方式将凝胶微粒外的水分挤出,实现快速脱水。
AFM
相互作用力和
QCM
实验证明了
CNF-LA
相互作用远强于
CNF-CNF
相互作用,这是形成凝胶微粒的关键原因。
图
2.
添加乳酸对纳米纤维素保水值的影响及纳米纤维素絮聚机理
纤维素分子链内极性和非极性区域相互交替,相邻分子链通过面内氢键连接,所形成的晶体在不同的晶面有不同的亲水性,以纤维素
Iβ
晶型为例,在(
1 1 0
)和(
1
1
0
)晶面暴露的极性基团(
-C-OH
)较多,亲水性较强,而在(
2 0 0
)晶面暴露非极性的
-CH
2
较多,较为疏水;另外,晶体之间的间距也影响纤维素的保水值。通过滴加乳酸将表面有大量亲水性基团的(
1 1 0
)和(
1
1
0
)晶面连接,达到屏蔽亲水基团和缩短晶面间距的目的,从而大幅减少纳米纤维素的保水值,通过简单的挤压过滤的方式即可实现快速脱水,得到高固含量的纳米纤维素凝胶
,最终可通过热压工艺将高固含凝胶模塑成型。
图
3.
纳米纤维素块体材料构筑过程中纳米纤维素的聚集行为
如图
4
所示,作者对纳米纤维素块体材料的化学结构和物理结构进行了表征,揭示了块体材料内部的强氢键网络,
LA
的分布规律,及
CNFs
形成的平面内各向同性、垂直面层层堆叠的超结构。
图
4.
纳米纤维素块体材料化学结构和物理结构表征
如图
5
所示,作者对纳米纤维素块体材料各方面的力学性能进行了深入研究。结果表明,纳米纤维素的拉伸强度、弯曲强度和表面硬度均显著优于绝大部分的工程塑料,展示了作为结构材料的实际应用价值。
如图
6
所示,作者对纳米纤维素块体材料的水稳定性、热稳定性、阻燃性能、重复加工性和降解性能进行了综合评估。结果表明,快速脱水和模压成型策略不仅提升了纳米纤维素的加工性能,所制备的结构材料还展现出各种具有竞争力的服役特性,是理想的石油基工程塑料替代品。本工作为纳米纤维素块体材料的制备和应用开辟了新的路径。
总结:针对纳米纤维素脱水困难这一长期制约其实际应用的难题,作者提出超分子尺度调控纳米纤维素亲水性的策略,添加乳酸使纳米纤维素絮聚,大幅降低保水值,通过压滤实现快速脱水。对高固含的纳米纤维素凝胶进行模压成型,成功制备了透明、轻质高强、水
/
热稳定性好、可模塑加工、阻燃和可降解的块体材料,在替代石化基塑料制品方面具有巨大潜力。
原文链接:
https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202415313
作者简介
陈朝吉,武汉大学资源与环境科学学院教授、博士生导师。
2015
年博士毕业于华中科技大学,
2015-2021
年分别于华中科技大学与马里兰大学帕克分校从事博士后研究,并于
2021
年
5
月入职武汉大学资环学院组建
X-Biomass
课题组。从事生物质材料(木材、竹材、纤维素、甲壳素等)的多尺度结构设计、功能化及高值利用方面的研究,致力于以天然材料解决可持续发展面临的材料
-
能源
-
环境挑战。以第一
/
通讯作者(含同等贡献)在
Nature (2
篇
)
、
Science
、
Nature Reviews Materials
、
Nature Sustainability (2
篇
)
、
Nature Communications (6
篇
)
等国内外著名学术期刊上发表
SCI
论文
100
余篇,总引用
33,000
余次,
H
因子
98
,
4
5
篇论文入选
ESI
高被引论文,
1
4
篇(曾)入选热点论文。获科睿唯安“全球高被引科学家”(
2021-2024
连续四年入选材料科学领域)、斯坦福大学“全球前
2%
高被引科学家”终身影响力榜单、麻省理工科技评论亚太区“
35
岁以下科技创新
35
人”、“
ACS KINGFA Young Investigator Award
”、“中国化学会纤维素专业委员会青年学者奖”、“中国新锐科技人物卓越影响奖”、阿里巴巴达摩院“青橙优秀入围奖”、“
Advanced Science
青年科学家创新奖”、“
R&D 100 Awards
”等荣誉。担任
The Innovation Materials
学术编辑,
The Innovation
、
Research
、
SusMat
、
Environmental Science & Ecotechnology
、
Green Carbon
、
Molecules
等杂志编委
/
青年编委,以及中国化学会纤维素专业委员会委员。
课题组网站:
https://biomass.whu.edu.cn/index.htm
相关进展
欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至[email protected],并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。
欢迎加入微信群
为满足
高分子产学研
各界同仁的要求,陆续开通了包括高分子专家学者群在内的
几十个
专项交流群
,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的
上万名
顶尖的专家学者、技术人员及企业家。
申请入群,请先加审核微信号
PolymerChina
(或长按下方二维码),并请一定注明:
高分子+姓名+单位+职称(或学位)+领域(或行业)
,否则不予受理,资格经过审核后入相关专业群。