专栏名称: 机器学习与推荐算法
专注于分享经典的推荐技术,致力于传播基础的机器学习、深度学习、数据挖掘等方面的知识。
目录
相关文章推荐
独立出海联合体  ·  2025年首周Steam销量榜:《流放之路2 ... ·  昨天  
独立出海联合体  ·  2025年首周Steam销量榜:《流放之路2 ... ·  昨天  
墨香中华  ·  过了腊八就是年! ·  2 天前  
佳木斯广播电视台  ·  【快乐童年】《国学堂》本期推出成语故事《孺子可教》 ·  3 天前  
墨香中华  ·  一首《祈祷》祝愿所有人平安健康! ·  3 天前  
51好读  ›  专栏  ›  机器学习与推荐算法

KDD2024推荐系统/计算广告/大模型论文整理(研究专题)

机器学习与推荐算法  · 公众号  ·  · 2024-09-04 08:00

正文

嘿,记得给“机器学习与推荐算法”添加星标

第30届SIGKDD会议已于2024年8月25日至29日在西班牙巴塞罗纳举行。据统计,今年Research Track共有2046篇有效投稿,接收率为20%,相比KDD2024的接收率22.10%有所下降。其中,涉及到的推荐系统相关的论文共59篇(本文只整理了Research Track相关论文,应用专题在次条中进行总结)。整理不易,欢迎小手点个在看/分享。

本文收集与整理了发表在该会议上的推荐系统相关论文,以供研究者们提前一睹为快。本会议接受的论文主要整理了Research Track Papers,因此大家可以提前领略和关注学术界的最新动态。如果不放心本文整理的推荐系统论文集锦,也可自行前往官网查看,学术类论文官网接收论文列表如下:

https://kdd2024.kdd.org/research-track-papers/

通过对本次接收的论文进行总结发现,从所涉及的研究主题角度来看,此次大会主要聚焦在了大模型推荐系统[1-8]、图推荐算法[9-16]、序列推荐算法[17-25]、推荐公平性&安全性&隐私性[26-32]、计算广告[33-40]、推荐去偏&去噪[41-44]、强化学习推荐[45-48]、可解释推荐[49]、因子分解机[50]、跨域推荐[51]、互惠推荐[52]、冷启动推荐[53]、多任务推荐[54]、协同蒸馏[55]等。值得注意的是传统推荐主题与去年所关注的类似,今年大模型推荐系统开始崛起。

大模型推荐系统

1. RecExplainer: Aligning Large Language Models for Explaining Recommendation Models
Yuxuan Lei (University of Science and Technology of China) et al.

2. Bridging Items and Language: A Transition Paradigm for Large Language Model-Based Recommendation
Xinyu Lin (National University of Singapore) et al.

3. CoRAL: Collaborative Retrieval-Augmented Large Language Models Improve Long-tail Recommendation
Junda Wu (University of California San Diego) et al.

4. Large Language Models meet Collaborative Filtering: An Efficient All-round LLM-based Recommender System
Sein Kim (Korea Advanced Institute of Science and Technology) et al.

5. DisCo: Towards Harmonious Disentanglement and Collaboration between Tabular and Semantic Space for Recommendation
Kounianhua Du (Shanghai Jiao Tong University) et al.

6. Adapting Job Recommendations to User Preference Drift with Behavioral-Semantic Fusion Learning
Xiao Han (City University of Hong Kong) et al.

7. EAGER: Two-Stream Generative Recommender with Behavior-Semantic Collaboration
Ye Wang (Zhejiang University) et al.

8. CheatAgent: Attacking LLM-Empowered Recommender Systems via LLM Agent
Liang-bo Ning (The Hong Kong Polytechnic University) et al.

图推荐算法

9. Towards Robust Recommendation via Decision Boundary-aware Graph Contrastive Learning
Jiakai Tang (Gaoling School of Artificial Intelligence, Renmin University of China) et al.

10. GPFedRec: Graph-Guided Personalization for Federated Recommendation
Chunxu Zhang (College of Computer Science and Technology, Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University) et al.

11. How Powerful is Graph Filtering for Recommendation
Shaowen Peng (Nara Institute of Science and Technology) et al.

12. Unifying Graph Convolution and Contrastive Learning in Collaborative Filtering
Yihong Wu (Université de Montréal) et al.

13. Graph Bottlenecked Social Recommendation
Yonghui Yang (Key Laboratory of Knowledge Engineering with Big Data, Hefei University of Technology) et al.

14. When Box Meets Graph Neural Network in Tag-aware Recommendation
Fake Lin (University of Science and Technology of China) et al.

15. Consistency and Discrepancy-Based Contrastive Tripartite Graph Learning for Recommendations
Linxin Guo (Chongqing University) et al.

16. Customizing Graph Neural Network for CAD Assembly Recommendation
Fengqi Liang (Beijing University of Post and Telecommunication); Huan Zhao (4Paradigm Inc.) et al.

序列推荐算法

17. Explicit and Implicit Modeling via Dual-Path Transformer for Behavior Set-informed Sequential Recommendation
Ming Chen (College of Computer Science and Software Engineering, Shenzhen University) et al.

18. Probabilistic Attention for Sequential Recommendation
Yuli Liu (Qinghai University, Qinghai Provincial Key Laboratory of Media Integration Technology and Communication) et al.

19. Dataset Regeneration for Sequential Recommendation
Mingjia Yin (University of Science and Technology of China & State Key Laboratory of Cognitive Intelligence) et al.

20. Disentangled Multi-interest Representation Learning for Sequential Recommendation
Yingpeng Du (Nanyang Technological University) et al.

21. Pre-Training with Transferable Attention for Addressing Market Shifts in Cross-Market Sequential Recommendation
Chen Wang (University of Illinois Chicago) et al.

22. ROTAN: A Rotation-based Temporal Attention Network for Time-Specific Next POI Recommendation
Shanshan Feng (Centre for Frontier AI Research, ASTAR, Institute of High Performance Computing, ASTAR) et al.

23. Diffusion-Based Cloud-Edge-Device Collaborative Learning for Next POI Recommendations
Jing Long (The University of Queensland) et al.

24. Going Where, by Whom, and at What Time: Next Location Prediction Considering User Preference and Temporal Regularity
Tianao Sun (School of Software, Shandong University) et al.

25. DIET: Customized Slimming for Incompatible Networks in Sequential Recommendation
Kairui Fu (Zhejiang University) et al.

推荐公平性&安全性&隐私性

26. Where Have You Been? A Study of Privacy Risk for Point-of-Interest Recommendation
Kunlin Cai (University of California, Los Angeles) et al.

27. Performative Debias with Fair-exposure Optimization Driven by Strategic Agents in Recommender Systems
Zhichen Xiang (College of Management and Economics, Tianjin University, Laboratory of Computation and Analytics of Complex Management Systems (CACMS), Tianjin University) et al.

28. Unveiling Vulnerabilities of Contrastive Recommender Systems to Poisoning Attacks
Zongwei Wang (Chongqing University) et al.

29. Debiased Recommendation with Noisy Feedback
Haoxuan Li (Peking University) et al.

30. A Hierarchical and Disentangling Interest Learning Framework for Unbiased and True News Recommendation
Shoujin Wang (University of Technology Sydney) et al.

31. Harm Mitigation in Recommender Systems under User Preference Dynamics
Jerry Chee (Cornell University) et al.

32. Counteracting Duration Bias in Video Recommendation via Counterfactual Watch Time
Haiyuan Zhao (School of Information, Renmin University of China) et al.

计算广告

33. Robust Auto-Bidding Strategies for Online Advertising
Qilong Lin (Shanghai Jiao Tong University) et al.

34. InLN: Knowledge-aware Incremental Leveling Network for Dynamic Advertising
Xujia Li (Hong Kong University of Science and Technology) et al.

35. Joint Auction in the Online Advertising Market
Zhen Zhang (Gaoling School of Artificial Intelligence, Renmin University of China) et al.

36. Auctions with LLM Summaries
Avinava Dubey (Google Research) et al.

37. Bi-Objective Contract Allocation for Guaranteed Delivery Advertising
Yan Li (Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, School of Computer Science and Technology, University of Chinese Academy of Sciences) et al.

38. Optimized Cost Per Click in Online Advertising: A Theoretical Analysis
Kaichen Zhang (Thrust of Artificial Intelligence, The Hong Kong University of Science and Technology (Guangzhou)) et al.

39. Truthful Bandit Mechanisms for Repeated Two-stage Ad Auctions
Haoming Li (Shanghai Jiaotong University) et al.

40. An Efficient Local Search Algorithm for Large GD Advertising Inventory Allocation with Multilinear Constraints
Xiang He (Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, School of Computer Science and Technology, University of Chinese Academy of Sciences) et al.

推荐去偏&去噪

41. Self-Supervised Denoising through Independent Cascade Graph Augmentation for Robust Social Recommendation
Youchen Sun (Nanyang Technological University) et al.

42. Double Correction Framework for Denoising Recommendation
Zhuangzhuang He (Hefei University of Technology) et al.

43. Improving Multi-modal Recommender Systems by Denoising and Aligning Multi-modal Content and User Feedback
Guipeng Xv (School of Informatics, Xiamen University) et al.

44. Popularity-Aware Alignment and Contrast for Mitigating Popularity Bias
Miaomiao Cai (Hefei University of Technology) et al.

强化学习推荐系统

45. Privileged Knowledge State Distillation for Reinforcement Learning-based Educational Path Recommendation
Qingyao Li (Shanghai Jiao Tong University) et al.

46. On (Normalised) Discounted Cumulative Gain as an Off-Policy Evaluation Metric for Top- Recommendation
Olivier Jeunen (ShareChat) et al.

47. Maximum-Entropy Regularized Decision Transformer with Reward Relabelling for Dynamic Recommendation
Xiaocong Chen (Data 61, CSIRO) et al.

48. Conversational Dueling Bandits in Generalized Linear Models
Shuhua Yang (University of Science and Technology of China) et al.

其他分类

49. Natural Language Explainable Recommendation with Robustness Enhancement
Jingsen Zhang (Gaoling School of Artificial Intelligence, Renmin University of China) et al.

50. Rotative Factorization Machines
Zhen Tian (Gaoling School of Artificial Intelligence, Renmin University of China, Beijing Key Laboratory of Big Data Management and Analysis Methods) et al.

51. Mitigating Negative Transfer in Cross-Domain Recommendation via Knowledge Transferability Enhancement
Zijian Song (School of CS, Peking University, National Engineering Laboratory for Big Data Analysis and Applications, Peking University) et al.

52. Revisiting Reciprocal Recommender Systems: Metrics, Formulation, and Method
Chen Yang (Nanbeige Lab, BOSS Zhipin, Gaoling School of Artificial Intelligence, Renmin University of China) et al.

53. Warming Up Cold-Start CTR Prediction by Learning Item-Specific Feature Interactions
Yaqing Wang (Baidu Research, Baidu Inc.) et al.

54. Automatic Multi-Task Learning Framework with Neural Architecture Search in Recommendations
Shen Jiang (State Key Laboratory for Novel Software Technology, Nanjing University) et al.

55. Continual Collaborative Distillation for Recommender System
Gyuseok Lee (Pohang University of Science and Technology) et al.

56. Relevance Meets Diversity: A User-Centric Framework for Knowledge Exploration Through Recommendations
Erica Coppolillo (Department of Computer Science, University of Calabria, ICAR-CNR) et al.

57. Shopping Trajectory Representation Learning with Pre-training for E-commerce Customer Understanding and Recommendation
Yankai Chen (Department of Computer Science and Engineering, The Chinese University of Hong Kong) et al.

58. Item-Difficulty-Aware Learning Path Recommendation: From a Real Walking Perspective
Haotian Zhang (State Key Laboratory of Cognitive Intelligence, University of Science and Technology of China) et al.

59. User Welfare Optimization in Recommender Systems with Competing Content Creators
Fan Yao (University of Virginia) et al.


欢迎干货投稿 \ 论文宣传 \ 合作交流

推荐阅读

KDD2023推荐系统论文整理(研究专题)
KDD2023推荐系统论文整理(应用专题)
SIGIR2024 | 大模型增强知识赋能传统序列推荐

由于公众号试行乱序推送,您可能不再准时收到机器学习与推荐算法的推送。为了第一时间收到本号的干货内容, 请将本号设为星标,以及常点文末右下角的“在看”。

喜欢的话点个在看吧👇