在大数据存储领域,HDFS或许就是我们最放心的守门员,全量的历史数据都可以交给他。你几乎不用害怕他会“丢球”,而他守门的技巧是可以横向扩展的,再多再猛烈的射门他都能挡得住。
PostgreSQL是保守型的后场选手,他技术全面,在保持数据一致性方面他能做到近乎完美的万无一失。性格稳重,以符合大多数教练对后防需求的思维方式来踢球。
HBase属于后腰型选手,既能在防守上给PostgreSQL以协助,又不时通过列式存储的技术特点传出让人拍案叫绝的好球。
Redis是中场提速器,他不仅能够加快球队的传球效率为球队提速,而且还以极高的传球命中率著称,偶尔传出的致命一击更能帮助球队攻城拔寨。Redis还是最好的团队成员,可以与各种类型的球员打出漂亮配合,他还不抢风头,只在自己最擅长的领域默默地展现自己的才华。
ElasticSearch或许可以称得上是“中场大师”,因为他能为各种类型的前锋提供传球支持,并能保证球权处理的高效性。他的各种盘球技法(支持各式各样的查询)让人眼花缭乱。兴之所至时,他的盘带与传球真如水银泻地一般,No look pass的传球总是出人意料的精彩。
诸如Parquet、Neo4j、Pilosa之类的数据库都可以称得上是剑走偏锋的前锋球员.他们不善于应对阵地战靠着稳扎稳打通过硬实力硬吃对手,而是像刺客一般伺机而动,对手稍有不慎,迎接他的就是一剑封喉的绝杀。
对于polyglot-db这种解决方案,我们还需要细心处理好数据一致性问题,即当数据源的数据发生变化时,我们如何将这些数据变化反应到各种存储工具中。如果数据是以immutable形式存储,满足数据的一致就变得容易多了。因此在polyglot-db的场景下,我们倾向于数据保持不变。如果业务场景确实不支持,同步就会变得更复杂。在前面讲解数据采集时,我已经给出了不够完美的解决方案,庶几能解决数据同步问题。
数据存储就是数据平台工程师手中的工具百宝箱,你需要熟悉各种工具的利弊,他们擅长处理的场景,然后再将好钢用在刀刃上,以求最大性的发挥工具的潜力。记住,
在大数据平台中,不是数据驱动而是业务场景驱动你对数据存储的技术决策。