医疗是一个很特殊的行业,特殊到医疗行业的每次变革似乎都是“从外向内”的外部推动。医疗行业的这种“迟钝感”并不是说医生和院长很“学究”,而是这个行业实在需要太多的敬畏和踏实。
不管是AI或者医疗大数据项目,本质上还是需要优质的数据。此前,有观点认为,“中国市场大、数据多,所以将来奇迹一定会发生在中国。”
但是,医疗大数据真的是“大数据”吗?
现实情况可能并非如此。首先,大医院的临床数据很可能不适用于县级医院。其次,每家医院的信息化工作都涉及几十个厂家,对数据的采集、存储都有各自的标准。而不同医院系统、医院不同系统的割裂性之间又让信息的共享遭遇阻碍。再者,医疗数据泄露的风险,让医院不敢把所有的数据都开放出来给企业。
南方医科大学副教授刘再毅曾说,医院影像科每天产生很多数据,但其中能用的连1%都不到。
北京中医药大学东方医院教授、信息管理处处长韦云也表示,我国医疗大数据的利用率仍然太低。“医疗大数据已经做了十几年,但现在各个医院的大量信息还是完全沉默在那里。”
数据难关之外,AI技术的发展也到了一个“瓶颈期”。
电子科技大学教授李纯明曾在接受雷锋网采访时谈到,深度学习吸引人的地方在于,原则上它在不同的应用中均可以使用同样的训练算法框架。只需替换训练数据和相应的标注进行训练,即可得出一个具有某种输入输出关系的多层神经网络。但这种看起来一劳永逸的框架,在实际应用中还有一些局限。
最近,中国科学院院士、清华大学人工智能研究院院长张钹在接受《经济观察报》采访时表示,历史上,人工智能曾因公众期待过高而几经回落。尽管产业层面还有空间,但目前基于深度学习的人工智能在技术上已经触及天花板。
人工智能在语音识别、图像识别、围棋三个领域显现了强大的潜力,但是AI技术的应用边界和条件已经逐渐清晰。
张钹的观点在医学领域同样适用:医学AI将进入后深度学习时代。
另外,医疗AI在商业化上的难题也还没有得到很好的解决。经过了三年多的发展,影像AI领域内的公司很多还没有清晰的商业模式与盈利场景,医院的付费意愿很低。
商汤科技副总裁张少霆认为,在中国的现实环境下,“人工智能+医疗”的需求是“实打实存在的”,但“人工智能+医疗”本身的商业价值如何挖掘依然是个难题。
曾在创业公司担任副总裁的张京雷说,为什么医疗AI的2B、2C模式没有跑通?最深层次的原因在于创业思维。有一些公司从诞生的第一天起,就是从IT的角度切入医疗,但是单纯从IT角度来解决医疗问题一定是失败的。
沈定刚教授和张京雷的观点不谋而合。
沈教授曾在去年雷锋网举办的CCF-GAIR大会上演讲时表示,做影像AI,必须知道我们要解决什么问题,然后找相应的技术来解决问题,而不是有了技术再找问题。
学术界和企业界,都对医学AI的商业化提出了自己的看法。可以肯定的是,医疗AI的发展绝不是一蹴而就的,它是一个系统性的工程,需要足够的勇气和智慧。
医疗AI的重重困难,让人不禁想问:现在,是医疗AI黎明前的至暗时刻,还是凌冽寒冬的开始?