初入数据分析行业的同学或还在门口徘徊想要从事数据分析职业的同学常常会比较困惑,非常迫切地想要知道作为一个数据分析师,到底需要掌握那些技能,这里笔者作为过来人给到大家一点建议。(注意这里适用的是互联网行业的数据分析师,不一定适合传统行业。)
首先,你需要了解,数据分析师到底是干什么的,该职位在企业中在扮演一个什么样的角色,为了能结合实际情况进行阐述,这里先给大家看一下某公司招聘数据分析师的JD。
工作职责
1、支持各种常规或临时数据分析需求;
2、提供各类业务相关的分析及建议;
3、通过建模深入挖掘用户或产品方面的有价值的信息;
4、和各部门沟通协调需求并提出各种新的数据分析项目或方案;
5、持续地改进数据采集、处理、分析、报告等各个流程上的工作。
这里有一些关键词,“支持”、“分析”、“建议”、“有价值的信息”、“沟通”、“项目”、“方案”,通过这些关键词可以一窥数据分析师的功能所在。一般来讲数据分析师的日常工作主要分为3部分内容,
(1)支持各业务部门或者领导的日常的数据需求。
(2)针对主题或研究专项进行深入的数据分析,形成有结论和建议的分析报告,甚至是解决方案。
(3)持续的跟进一个项目,和业务人员一样为该项目的KPI负责,同时具有项目推动能力和主人翁精神,“不计一切手段”地想办法达到目标,经常需要从数据上给项目组成员们提供insights。
这里每一部分的内容对分析师的能力要求有所不同,能做好第一部分的人是一个合格数据分析师助理(或者说叫数据专员),能做好第二部分的人是一个不错的初级数据分析师,能做好第三部分的人才是一个真正优秀且对企业有极高价值的数据分析师。
在我的职业生涯中,不止一次的被前辈们教导,一个优秀的数据分析师,一定不能是一个“取数机器”,他要是有头脑,有想法,有能力发现问题并且解决问题的,当然我相信在这个行业能做到这一点的人是凤毛麟角的。如果你已经是一枚数据分析师了,不妨按照上面的几点对号入座,看看自己已经进阶到哪一步了,又有哪些地方还尚需努力。
在身边偶尔会听到别人说做数据分析师,工具不是很重要,重要的是那些软实力,其实这一点我并不敢苟同。俗话说工欲善其事必先利其器,所以工具用的好,其实是可以极大的提升工作效率的。那么作为一名数据分析师,都需要掌握哪些工具呢,这里先列出使用频率最高的3个工具。
(1)sql
学习写sql是做数据分析师的第一步,对于没有数据库和编程语言基础的人来讲,也并不是一件十分困难的事儿,关键在于你是否能找到一个“好师傅”带你飞,这里的“好师傅”一是指教你写sql的入门书籍,上面会系统的讲解sql的相关知识并且最好有实例教学;二是指在工作中会有前辈教你一些书写sql的良好习惯以及优化代码的方法等等(要知道把功能实现是一码事儿,高效的把功能实现是另一码事儿)。这里附上一本我学习sql的书,需要的人自行认领——《SQL基础教程》MICK 著(人民邮电出版社)。优化sql的方法如有需要,我会再开一篇文章给大家分享。
(2)excel
我认为第二重要的工具是excel,而非R,SAS, SPSS, 作为数据分析师,其实和建模师不同的是,分析师更多的时候是在分析数据,而不是建模,分析数据的时候你总得把数据放到一个文件里边是吧,这个文件就是excel。excel的功能远比我们想象的要强大许多,我见过每天用excel做报表的(还是在大型互联网公司),见过每天写vba处理上百封数据的,见过用excel画出十分精美的图表的,毫不夸张的说,做为一个数据分析师基本每天都要打开关闭几十个excel。那么,怎么把excel用的好呢?我觉得有一下几个模块要学会
第一个是公式,excel常用公式要熟练,网上很多教程,很容易找到。
第二个是数据透视表,因为分析数据的时候经常需要拆分到更细的粒度,所以数据透视表不可或缺。
第三个是图表,excel的图表功能基本已经可以满足一个数据分析师的日常需要了,但是什么数据画什么图,这也是一门学问,比如说想要表达趋势,那最好画线图,如果是想表示各个部分的占比,无需纵向对比,那最好画饼图。(这里如有需要我会再开一篇文章写图表的使用方法)。
(3)统计工具(R or SPSS)
一般情况下数据分析师极少会用到统计软件,但是在一些特殊情况下会有用到。比如有的公司也会要求数据分析师做建模一类的工作(一般这类公司缺少数据挖掘的专业人才),这个时候数据分析师可能首先需要了解一些经典的统计模型(最最常用的是逻辑回归模型),为了快速掌握,其实你大可不必去找一本《机器学习》去死磕书本,而是只要了解这个模型的使用场景、数据处理的方法、使用何种软件实现就可以了,这里可能会要求你有一定的概率统计基础,但就算是没有,你也不必要特别担心,搞清楚模型的输入和输出,最后证明模型真的是有用的,这才是王道。(更加专业的数据挖掘我也较少涉猎,感兴趣的同学可以自行想办法学习)。
如果一个人会写sql,精通excel,可以绘制精美的图表,并且懂得一些常用的统计模型,基本上在面试数据分析师职位的时候工具关就可以过了。当然这里还有一些其他的工具,在工作中也起到很大的帮助,比如画结构图的mindmanager,帮助你收藏处理工作文件的有道云笔记,以及做报告时常常用到的ppt。
上面也提到了,数据分析师的主要职责是发现问题,分析问题,解决问题,所以数据分析师主要是靠脑子吃饭,思路决定出路。一般招聘人会在JD中描述要求分析师有“数据敏感度”以及“严谨的逻辑思维能力”等,但是这些到底是什么?这里就给大家讲讲我个人的一些理解。
举个例子,小王做数据的时候发现公司9月份的收入相比去年9月增长了30%,十分高兴的在10月初的月度会议上跟领导汇报了这一好消息,领导却并没有开心,因为公司的主要收入来自软件销售费用,9月份是公司的淡季,软件销售量并没有增长,而且相比去年的时候单价还下降了,收入怎么可能会有增长?领导要求小王对这个数据进行核查,后来经过排查才发现原来是财务部的人将公司历史上的“僵尸账户”(指的是账户里面有钱但是一直没有用)统一放到9月份进行核销了,导致收入大涨。