专栏名称: 量子位
վ'ᴗ' ի 追踪AI行业和技术动态,这里更快一步!关注我们,回复“今天”,更多大新闻等你来发现
目录
相关文章推荐
爱可可-爱生活  ·  【[176星]IntellAgent:用于对 ... ·  3 天前  
爱可可-爱生活  ·  【[1.4k星] ... ·  3 天前  
爱可可-爱生活  ·  专家自主模型(AoE)通过赋予混合专家模型中 ... ·  3 天前  
黄建同学  ·  Google 最新的 Gemini 2.0 ... ·  3 天前  
51好读  ›  专栏  ›  量子位

DeepMind新论文:基于变分方法的自编码生成对抗网络

量子位  · 公众号  · AI  · 2017-06-17 13:36

正文

王小新 编译自 Arxiv
量子位 出品 | 公众号 QbitAI

最近,DeepMind公司的Mihaela Rosca、Balaji Lakshminarayanan和David Warde-Farley等人写了一篇题为“一种基于变分方法的自编码生成对抗网络(Variational Approaches for Auto-Encoding Generative Adversarial Networks)”的论文。

这篇文章利用变分推理,提出了一种将自动编码器和生成对抗网络融合起来的方法。

摘要

自动编码生成对抗网络结合了标准形式的GAN算法,通过自动编码器给出的重建损失(construction loss)来区分原始数据和模型的生成数据。这种模型的目的是确保基于所有可用数据进行训练,防止学习得到的生成模型出现模式崩溃问题。

在本文中,我们提出了一种规则,通过利用生成模型的层次结构,将自动编码器结合到生成对抗网络中。由基本原理可表明,变分推理可作为网络学习的基本方法,但是要将随机可能性替换为合成似然性,且将未知后验分布替换为隐含分布。本文使用了鉴别器来学习网络中的合成似然性和隐含后验分布。

于是,我们结合这两种方法中的最优点,开发出一种结合变分自动编码器和生成对抗网络的融合方法。我们设置了一个共同的优化目标,讨论了引导学习的约束条件,与大量现有研究相联系,并使用了一系列实验来系统地定量评估本文方法的效果。

更多实际性能及结果讨论请看论文:https://arxiv.org/abs/1706.04987

P.S.

他们给自己的方法起名叫“α-GAN”,理由是:GAN太多,拉丁字母前缀不够用了,只好用希腊字母了……

【完】

一则通知

量子位正在组建自动驾驶技术群,面向研究自动驾驶相关领域的在校学生或一线工程师。欢迎大家加量子位微信(qbitbot),备注“自动驾驶”申请加入哈~

招聘

量子位正在招募编辑记者、运营、产品等岗位,工作地点在北京中关村。相关细节,请在公众号对话界面,回复:“招聘”。

 扫码强行关注『量子位』

追踪人工智能领域最劲内容