专栏名称: 研途星辰
主要分享与科研学术相关的内容。
51好读  ›  专栏  ›  研途星辰

好文推荐第73期 | C&G中科院1区TOP文章《CFD–DEM建模非球形泥浆颗粒在颗粒土中的渗透》!

研途星辰  · 公众号  ·  · 2025-02-03 08:51

正文

好文推荐

CFD–DEM modelling of the infiltration of non-spherical slurry particles in granular soils

CFD–DEM建模非球形泥浆颗粒在颗粒土中的渗透


摘要(Abstract)













在隧道盾构施工过程中,开挖面上的 泥浆过滤过程在支撑压力传递中起着重要作用 ,这对隧道面稳定性至关重要。本文通过一系列耦合的计算流体动力学( CFD )和离散元方法( DEM )数值模拟, 建立 泥浆过滤柱试验模型 。采用 不同长短比的扁球体来代表泥浆颗粒 。为更好地模拟泥浆颗粒的运动, 实施了简化的倾斜力矩模型 。随着 长短比 的系统变化,分析了颗粒的 压力分布、孔隙率、渗透性和取向等特征 。研究发现,地层内的压力分布、孔隙率和渗透性 高度依赖 于颗粒的长短比。长短比较大的颗粒倾向于有效地封闭渗透通道,并将泥浆压力转化为有效压力,从而有助于维持隧道面稳定性。本研究探讨了 颗粒形状如何影响泥浆渗透过程及滤饼的微观结构



引言(Introduction)













泥浆盾构法被广泛应用,尤其是在海底隧道和跨河开挖工程的建设中。图1为泥浆盾构工作原理的示意图。充填在压力室中的泥浆穿透地层,形成低渗透性滤饼,有效平衡地层的土水压力。


实验室柱状试验常用于研究泥浆渗透过程的宏观特征和滤饼性质。图2(a)展示了使用的典型实验室试验装置。将膨润土泥浆倒入充满饱和沙子的有机玻璃柱中,然后在柱顶部施加气压。在每次试验中都会形成滤饼,设备能够记录试验过程中滤水的体积。图2(b)显示了形成的滤饼的示例。滤饼的效果可以通过测量其厚度和孔隙比等性质来评估。


为了更好地理解在滤饼形成过程中以及形成后泥浆与土壤的相互作用机制,耦合计算流体动力学(CFD)和离散元方法(DEM)数值方法是目前最优选择 ,其中 固相被视为离散的泥浆颗粒 ,而 流体相则被视为连续的牛顿流体 CFD-DEM方法已被广泛应用于模拟泥浆颗粒在液体中的沉降、泥浆颗粒渗透柱试验、颗粒渗流以及颗粒堵塞等方面。例如,Dong et al.研究了不同液体-颗粒相互作用力和液体性质对滤饼形成的影响。Zhang et al.考虑了泥浆颗粒之间的凝聚效应,并建立了压力降比与滤饼孔隙率之间的线性关系。Yin et al.识别了泥浆和沙粒颗粒之间不同尺寸比组合下形成的四种滤饼类型。Zhou et al.研究了细颗粒与粗颗粒直径比、质量流量和滚动摩擦系数对填充床中细颗粒堵塞行为的影响。


尽管滤饼的形成已经被捕捉到, 目前的模拟模型通常基于颗粒为球形的假设 实际上,绝大多数颗粒呈现非球形,且可能是规则的或不规则的 膨润土是泥浆中主要的水合粘土矿物,主要成分是钠蒙脱石。其层状结构由单独的粘土片组成,这使得假设膨润土颗粒为球形可能过于理想化,无法准确捕捉膨润土颗粒的本质特征。颗粒形状对颗粒的堆积特性有很大影响,如孔隙率和颗粒在堆积中的取向。增大颗粒的长短比不仅会导致流速降低,还会引起颗粒流动结构的显著变化。扁球形颗粒倾向于在垂直方向上定向,而这种定向比起偏好水平方向定向的长球形颗粒更容易导致堆积床的渗透性下降。


关于非球形泥浆颗粒渗透的研究相对较少,尤其是利用CFD-DEM进行模拟时。 当模拟膨润土泥浆颗粒的渗透时,颗粒形状和长短比预计会显著影响模拟结果,包括泥浆颗粒的渗透距离、滤饼的孔隙率、厚度和压力分布。本文的 研究目标是建立一个更真实的膨润土泥浆在砂层中的渗透模拟模型,并通过耦合CFD-DEM数值模拟,研究颗粒形状对泥浆渗透过程和滤饼性质的影响 当水分存在时,蒙脱石的内部晶体结构会膨胀,从而导致层状结构转变为更加扁平的形状。通常采用扁球体来表示具有此形态的粘土颗粒。在本研究中, 膨润土泥浆颗粒被表示为扁球体 (即长轴和中轴长度相等的椭球体)。通过 选择不同的泥浆颗粒长短比和泥浆与沙粒颗粒尺寸比的组合,研究了泥浆过滤行为 结果通过分析空隙率、砂柱中的压力分布以及泥浆颗粒的取向来进行讨论。



图表(Figures and Tables)














Fig. 1. Schematic diagram of slu rry shield tunnelling .

Fig. 2. Laboratory test of slurry infiltration Subfigures taken fro m Min et al. (2019) . (a ) Schematic of apparatus for an infiltration column test; (b) Photographs of typical filter cakes formed.

Fig. 3 . The CFD mesh used to represent the sand column: (a) plan view; (b) front view.

Fig. 4 . Particle form characterisation and examples used in simulations. (a) Indices of sphericity, flatness and compactness; (b) Combinations of aspect ratio of the slurry particles and size ratio d " role="presentation" style=" display: inline-block; line-height: normal; font-size: 14.4px; font-size-adjust: none; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; "> 𝑑 d : D D " role="presentation" style=" display: inline-block; line-height: normal; font-size: 14.4px; font-size-adjust: none; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; "> 𝐷 between the slurry and sand particles.

Fig. 5. Position of an ellipsoid at different times as it settles under gravity within a quiescent fluid .

Fig. 6. y-component of the angular velocity of the ellipsoid settling under gravity sho wn in Fig. 5 .

Fig. 7 . Comparison of the simulation results for pressure drop versus fluid velocity with the Ergun equation for a packed bed of non-spherical particles.

Fig. 8 . Illustrations of filter cake morphology with different combinations of size ratio and aspect ratio.

Fig. 9 . Mean distance of the slurry particles from the bottom of the sand column in the filter cakes with different combinations of size ratio and aspect ratio.

Fig. 10 . Comparing the (a) void fraction and (b) pore pressure distributions of external filter cake at a size ratio of 1:3.

Fig. 11 . Normalised permeabilities of the uppermost region of the sand column after the formation of external filter cakes.

Fig. 12 . Polar histograms indicate the orientations of slurry particles of size ratio 1:3 in the x " role="presentation" style=" display: inline-block; line-height: normal; font-size: 14.4px; font-size-adjust: none; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; "> 𝑥 x–z z " role="presentation" style=" display: inline-block; line-height: normal; font-size: 14.4px; font-size-adjust: none; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; "> 𝑧 plane. 90° would represent a particle with its minor axis oriented vertically.

Fig. 13 . Comparing the (a) void fraction and (b) pore pressure distributions of filter cake formed by particles with a size ratio of 1:5.

Fig. 14 . Polar histograms indicate the orientations of slurry particles of size ratio 1:5 in the x " role="presentation" style=" display: inline-block; line-height: normal; font-size: 14.4px; font-size-adjust: none; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; "> 𝑥 x–z z " role="presentation" style=" display: inline-block; line-height: normal; font-size: 14.4px; font-size-adjust: none; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; "> 𝑧 plane.

Fig. 15 . Comparing the (a) void fraction and (b) pore pressure distributions of filter cake formed by particles with a size ratio of 1:6.

Fig. 16 . Polar histograms indicate the orientations of slurry particles of size ratio 1:6 in the x " role="presentation" style=" display: inline-block; line-height: normal; font-size: 14.4px; font-size-adjust: none; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; "> 𝑥 x–z z " role="presentation" style=" display: inline-block; line-height: normal; font-size: 14.4px; font-size-adjust: none; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; "> 𝑧 plane. For aspect ratios of 1.2 and 1.5, particles which have migrated to the bottom of the sand columns have been excluded to eliminate the influence of particle stacking on the orientation distribution analysis.

Fig. 17. Proportion of particles with orientation angles ranging from 0° to 15° as a function of aspect ratio. For size ratio 1:5, (a) sectional view of aspect ratio 3 case; (b) sectional view of aspect ratio 7 case.

Fig. 18 . Sectional views of filter cakes formed by slurry particles with an aspect ratio of 7. (a) and (b) are filter cakes formed by particles with and without cohesion, respectively, at a fixed size ratio of 1:5. (c) and (d) are filter cakes formed by cohesive particles with size ratios 1:3 and 1:6, respectively.

Table 1 . Parameters a " role="presentation" style=" display: inline-block; line-height: normal; font-size: 14.4px; font-size-adjust: none; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; "> 𝑎







请到「今天看啥」查看全文