专栏名称: Python开发者
人生苦短,我用 Python。伯乐在线旗下账号「Python开发者」分享 Python 相关的技术文章、工具资源、精选课程、热点资讯等。
目录
相关文章推荐
Python爱好者社区  ·  年薪96w!真心建议大家冲一冲新兴领域,工资 ... ·  昨天  
Python爱好者社区  ·  知乎:为什么程序员的社会地位不高? ·  3 天前  
Python爱好者社区  ·  100W,我决定入局! ·  3 天前  
Python爱好者社区  ·  阿里也没啥余粮。。 ·  5 天前  
Python中文社区  ·  用 Python + FMP ... ·  6 天前  
51好读  ›  专栏  ›  Python开发者

用 python 实现各种排序算法

Python开发者  · 公众号  · Python  · 2016-12-21 21:26

正文

(点击上方公众号,可快速关注)


来源:for-in 

链接:my.oschina.net/liuyuantao/blog/749329


总结了一下常见集中排序的算法



归并排序


归并排序也称合并排序,是分治法的典型应用。分治思想是将每个问题分解成个个小问题,将每个小问题解决,然后合并。


具体的归并排序就是,将一组无序数按n/2递归分解成只有一个元素的子项,一个元素就是已经排好序的了。然后将这些有序的子元素进行合并。


合并的过程就是 对 两个已经排好序的子序列,先选取两个子序列中最小的元素进行比较,选取两个元素中最小的那个子序列并将其从子序列中


去掉添加到最终的结果集中,直到两个子序列归并完成。


代码如下:


#!/usr/bin/python  

import sys  

  

def merge(nums, first, middle, last):  

    ''''' merge '''  

    # 切片边界,左闭右开并且是了0为开始  

    lnums = nums[first:middle+1]  

    rnums = nums[middle+1:last+1]  

    lnums.append(sys.maxint)  

    rnums.append(sys.maxint)  

    l = 0  

    r = 0  

    for i in range(first, last+1):  

        if lnums[l] rnums[r]:  

            nums[i] = lnums[l]  

            l+=1  

        else:  

            nums[i] = rnums[r]  

            r+=1  

def merge_sort(nums, first, last):  

    ''''' merge sort

    merge_sort函数中传递的是下标,不是元素个数

    '''  

    if first last:  

        middle = (first + last)/2  

        merge_sort(nums, first, middle)  

        merge_sort(nums, middle+1, last)  

        merge(nums, first, middle,last)  

  

if __name__ == '__main__':  

    nums = [10,8,4,-1,2,6,7,3]  

    print 'nums is:', nums  

    merge_sort(nums, 0, 7)  

    print 'merge sort:', nums


稳定,时间复杂度 O(nlog n)

 

插入排序


代码如下:


#!/usr/bin/python  

import sys  

  

def insert_sort(a):  

    ''''' 插入排序

    有一个已经有序的数据序列,要求在这个已经排好的数据序列中插入一个数,

    但要求插入后此数据序列仍然有序。刚开始 一个元素显然有序,然后插入一

    个元素到适当位置,然后再插入第三个元素,依次类推

    '''  

    a_len = len(a)  

    for i in range(a_len):

        key = a[i]

        j = i - 1

        while a_len = 0 and a[j] > key:  

            a[j+1] = a[j]  

            j-=1  

        a[j+1] = key  

    return a  

  

if __name__ == '__main__':  

    nums = [10,8,4,-1,2,6,7,3]  

    print 'nums is:', nums  

    insert_sort(nums)  

    print 'insert sort:', nums


稳定,时间复杂度 O(n^2)


交换两个元素的值python中你可以这么写:a, b = b, a,其实这是因为赋值符号的左右两边都是元组


(这里需要强调的是,在python中,元组其实是由逗号“,”来界定的,而不是括号)。


选择排序


选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到


排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所


有元素均排序完毕。


import sys  

def select_sort(a):  

    ''''' 选择排序  

    每一趟从待排序的数据元素中选出最小(或最大)的一个元素,

    顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。

    选择排序是不稳定的排序方法。

    '''  

    a_len=len(a)  

    for i in range(a_len):#在0-n-1上依次选择相应大小的元素  

        min_index = i#记录最小元素的下标  

        for j in range(i+1, a_len):#查找最小值  

            if(a[j]a[min_index]):  

                min_index=j  

        if min_index != i:#找到最小元素进行交换  

            a[i],a[min_index] = a[min_index],a[i]  

  

if __name__ == '__main__':  

    A = [10, -3, 5, 7, 1, 3, 7]    

    print 'Before sort:',A    

    select_sort(A)    

    print 'After sort:',A


不稳定,时间复杂度 O(n^2)

 

希尔排序


希尔排序,也称递减增量排序算法,希尔排序是非稳定排序算法。该方法又称缩小增量排序,因DL.Shell于1959年提出而得名。


先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行排序;


然后,取第二个增量d2


import sys  

def shell_sort(a):  

    ''''' shell排序  

    '''  

    a_len=len(a)  

    gap=a_len/2#增量  

    while gap>0:  

        for i in range(a_len):#对同一个组进行选择排序  

            m=i  

            j=i+1  

            while ja_len:  

                if a[j]a[m]:  

                    m=j  

                j+=gap#j增加gap  

            if m!=i:  

                a[m],a[i]=a[i],a[m]  

        gap/=2  

  

if __name__ == '__main__':  

    A = [10, -3, 5, 7, 1, 3, 7]    

    print 'Before sort:',A    

    shell_sort(A)    

    print 'After sort:',A


不稳定,时间复杂度 平均时间 O(nlogn) 最差时间O(n^s)1


堆排序 ( Heap Sort )


“堆”的定义:在起始索引为 0 的“堆”中:


节点 i 的右子节点在位置 2 * i + 24) 节点 i 的父节点在位置 floor( (i – 1) / 2 )   : 注 floor 表示“取整”操作


堆的特性:


 每个节点的键值一定总是大于(或小于)它的父节点


“最大堆”:


“堆”的根节点保存的是键值最大的节点。即“堆”中每个节点的键值都总是大于它的子节点。


上移,下移 :


当某节点的键值大于它的父节点时,这时我们就要进行“上移”操作,即我们把该节点移动到它的父节点的位置,而让它的父节点到它的位置上,然后我们继续判断该节点,直到该节点不再大于它的父节点为止才停止“上移”。


现在我们再来了解一下“下移”操作。当我们把某节点的键值改小了之后,我们就要对其进行“下移”操作。


方法:


我们首先建立一个最大堆(时间复杂度O(n)),然后每次我们只需要把根节点与最后一个位置的节点交换,然后把最后一个位置排除之外,然后把交换后根节点的堆进行调整(时间复杂度 O(lgn) ),即对根节点进行“下移”操作即可。 堆排序的总的时间复杂度为O(nlgn).


代码如下:


#!/usr/bin env python  

  

# 数组编号从 0开始  

def left(i):  

    return 2*i +1  

def right(i):  

    return 2*i+2  

  

#保持最大堆性质 使以i为根的子树成为最大堆  

def max_heapify(A, i, heap_size):  

    if heap_size 0:  

        return  

    l = left(i)  

    r = right(i)  

    largest = i # 选出子节点中较大的节点  

    if l  A[largest]:  

        largest = l  

    if r  A[largest]:  

        largest = r  

    if i != largest :#说明当前节点不是最大的,下移  

        A[i], A[largest] = A[largest], A[i] #交换  

        max_heapify(A, largest, heap_size)#继续追踪下移的点  

    #print A  

# 建堆    

def bulid_max_heap(A):  

    heap_size = len(A)  

    if heap_size >1:  

        node = heap_size/2 -1  

        while node >= 0:  

           max_heapify(A, node, heap_size)  

           node -=1  

  

# 堆排序 下标从0开始  

def heap_sort(A):  

    bulid_max_heap(A)  

    heap_size = len(A)  

    i = heap_size - 1  

    while i > 0 :  

        A[0],A[i] = A[i], A[0] # 堆中的最大值存入数组适当的位置,并且进行交换  

        heap_size -=1 # heap 大小 递减 1  

        i -= 1 # 存放堆中最大值的下标递减 1  

        max_heapify(A, 0, heap_size)  

  

if __name__ == '__main__' :  

  

    A = [10, -3, 5, 7, 1, 3, 7]  

    print 'Before sort:',A  

    heap_sort(A)  

    print 'After sort:',A


不稳定,时间复杂度 O(nlog n)


快速排序


快速排序算法和合并排序算法一样,也是基于分治模式。对子数组A[p…r]快速排序的分治过程的三个步骤为:


分解:把数组A[p…r]分为A[p…q-1]与A[q+1…r]两部分,其中A[p…q-1]中的每个元素都小于等于A[q]而A[q+1…r]中的每个元素都大于等于A[q];


解决:通过递归调用快速排序,对子数组A[p…q-1]和A[q+1…r]进行排序;


合并:因为两个子数组是就地排序的,所以不需要额外的操作。


对于划分partition 每一轮迭代的开始,x=A[r], 对于任何数组下标k,有:


1) 如果p≤k≤i,则A[k]≤x。


2) 如果i+1≤k≤j-1,则A[k]>x。


3) 如果k=r,则A[k]=x。


代码如下:


#!/usr/bin/env python  

# 快速排序  

'''''

划分 使满足 以A[r]为基准对数组进行一个划分,比A[r]小的放在左边,

   比A[r]大的放在右边

快速排序的分治partition过程有两种方法,

一种是上面所述的两个指针索引一前一后逐步向后扫描的方法,

另一种方法是两个指针从首位向中间扫描的方法。

'''  

#p,r 是数组A的下标  

def partition1(A, p ,r):  

    '''''

      方法一,两个指针索引一前一后逐步向后扫描的方法

    '''  

    x = A[r]  

    i = p-1  

    j = p  

    while j r:  

        if A[j] x:  

            i +=1  

            A[i], A[j] = A[j], A[i]  

        j += 1  

    A[i+1], A[r] = A[r], A[i+1]  

    return i+1  

  

def partition2(A, p, r):  

    '''''

    两个指针从首尾向中间扫描的方法

    '''  

    i = p  

    j = r  

    x = A[p]  

    while i = x and i j:  

            j -=1  

        A[i] = A[j]  

        while A[i]x and i j:  

            i +=1  

        A[j] = A[i]  

    A[i] = x  

    return i  

  

# quick sort  

def quick_sort(A, p, r):  

    '''''

        快速排序的最差时间复杂度为O(n2),平时时间复杂度为O(nlgn)

    '''  

    if p r:  

        q = partition2(A, p, r)  

        quick_sort(A, p, q-1)  

        quick_sort(A, q+1, r)  

  

if __name__ == '__main__':  

  

    A = [5,-4,6,3,7,11,1,2]  

    print 'Before sort:',A  

    quick_sort(A, 0, 7)  

    print 'After sort:',A


不稳定,时间复杂度 最理想 O(nlogn)最差时间O(n^2)


说下python中的序列:


列表、元组和字符串都是序列,但是序列是什么,它们为什么如此特别呢?序列的两个主要特点是索引操作符和切片操作符。索引操作符让我们可以从序列中抓取一个特定项目。切片操作符让我们能够获取序列的一个切片,即一部分序列,如:a = [‘aa’,’bb’,’cc’], print a[0] 为索引操作,print a[0:2]为切片操作。

觉得本文有帮助?请分享给更多人

关注「算法爱好者」,修炼编程内功

推荐文章
Python爱好者社区  ·  知乎:为什么程序员的社会地位不高?
3 天前
Python爱好者社区  ·  100W,我决定入局!
3 天前
Python爱好者社区  ·  阿里也没啥余粮。。
5 天前
Python中文社区  ·  用 Python + FMP 获取并分析全球股市数据
6 天前
人生研究所  ·  你那么孤独,却说一个人真好
7 年前
刘晓博说楼市  ·  上海楼市:会是下一个东京吗?
7 年前