专栏名称: nanomicroletters
Nano-Micro Letters 是上海交通大学主办的英文学术期刊,主要报道纳米/微米尺度相关的最新高水平科研成果与评论文章及快讯,在 Springer 开放获取(open-access)出版。可免费获取全文,欢迎关注和投稿。
目录
相关文章推荐
科幻世界SFW  ·  新刊速递 ... ·  2 天前  
科幻世界SFW  ·  文学动态 | ... ·  3 天前  
51好读  ›  专栏  ›  nanomicroletters

多孔超柔电磁屏蔽材料:MXene/聚酰亚胺复合泡沫的规模化制备及优异性能

nanomicroletters  · 公众号  ·  · 2024-02-03 11:03

正文

点击蓝字 · 关注我们


随着人们对电子器件以及基于电磁波的信息传输的不断倚重,适应不同应用需求(包括军事和民用)的新型电磁屏蔽纳米复合材料的制备及其性能研究的热度逐年增加。电磁屏蔽材料在便携式电子设备、无线通信、航空航天、军事和医疗设备领域至关重要,是保证设备正常运转不可或缺的手段。随着新型电子器件的发展,迫切需要轻量化、柔韧性好、电磁屏蔽性能好的材料。针对这种需求,研究者已经开发了众多功能性导电纳米复合材料,如基于碳纳米管、石墨烯、过渡金属碳化物(MXene)和金属纳米纤维的材料。其中,在电磁屏蔽材料中引入多孔结构,通过增加入射电磁波的多重反射能力可以有效提高屏蔽效能,这种做法越来越受到人们的青睐。如何使用简单、可规模化生产的方式组装本征惰性的导电纳米材料宏观体并同时获得有效的多孔结构,从而制备高性能的电磁屏蔽复合材料一直是该研究领域的发展趋势。

Porousand Ultra‑Flexible Crosslinked MXene/Polyimide Composites for Multifunctional Electromagnetic Interference Shielding

Zhi‑Hui Zeng*, Na Wu, Jing‑Jiang Wei, Yun‑Fei Yang, Ting‑Ting Wu, Bin Li, Stefanie Beatrice Hauser, Wei‑Dong Yang, Jiu‑Rong Liu*, Shan‑Yu Zhao*

Nano-Micro Letters (2022)14: 59

https://doi.org/10.1007/s40820-022-00800-0


本文亮点

1. 通过一种简单,可大规模生产的方法,制备出 大面积、轻质且强健、兼具优秀柔性 的过渡金属碳化物(Ti₃C₂ MXene)/聚酰亚胺(PI)多孔复合材料。

2. 除疏水性、抗氧化性和极端温度稳定性外,由于对构筑单体和微观结构的有效设计,复合泡沫还获得了 优异的电磁屏蔽性能

3. 此外,高柔性的复合泡沫表现出 优异的电热和压阻传感性能 ,在下一代柔性电子、航空航天和智能设备领域具有广阔的应用前景。

内容简介

山东大学刘久荣教授团队、曾志辉教授和瑞士联邦材料科学与技术研究所(EMPA)的赵善宇研究员团队 展开合作,研发了一种轻质、柔性的过渡金属碳化物 (Ti₃C₂ MXene)/聚酰亚胺(PI) (C-MXene@PI)多孔复合高性能电磁屏蔽材料。MXene@PI多孔复合材料是通过可扩展的浸涂工艺和化学交联制备的 制备方法简单,可大规模生产。作为高性能电磁屏蔽材料,该复合泡沫完美结合了MXene的超强导电性及PI的微米级空隙结构,在28.7至48.7 mg/cm³的密度下表现出令人满意的X波段电磁干扰(EMI)屏蔽效能(SE)(22.5~62.5 dB),获得了21,317 dB·cm²/g的优异表面特定SE。疏水性化学交联剂的选用增加了复合材料的抗氧化性、疏水性、防水性及极低温度下的稳定性。除电磁屏蔽功能外,该复合泡沫还可用作柔性加热器。与由合金板组成的商用加热器相比,其电热性能更为优异,热分布更为均匀,在低电压下具有显著、稳定,且可快速重现的特性。此外,该复合泡沫还可用作压阻传感器,很好地附着/穿戴在人体皮肤表面并展现出良好的传感性能,实现对人体运动进行灵敏可靠的监测。综上所述,该新型多孔复合材料不仅具有优异的电磁屏蔽性能,亦可作为柔性加热器以及可穿戴生物传感器;该材料具备简易且可规模化生产的制造工艺,在下一代柔性电子、航空航天和智能设备中具有广阔的应用前景。

图文导读

I C-MXene@PI多孔复合材料的制备与结构

通过蚀刻和分层MAX前驱体的方法制备得到稳定的MXene分散液。通过简单、可规模化的浸涂工艺,具有微米大小的孔结构和光滑孔壁表面的PI轻质多孔泡沫与MXene片复合,得到MXene@PI复合多孔材料。PI泡沫的亚胺环和MXene纳米片之间形成的强氢键相互作用等使得MXene能够均匀地粘附在PI骨架上,MXene薄片相互连接形成大量的导电网络,显著提高了多孔结构的导电性。化学交联处理进一步提高了C-MXene@PI复合泡沫的柔性,疏水性、防水性和抗氧化性等。通过SEM结果(图1)可以看到,与纯PI泡沫相比,C-MXene@PI泡沫具有相同微米大小且孔壁更粗糙的孔结构。C-MXene@PI复合泡沫具有在室温和极端温度(-196℃)下优异的力学柔韧性,优于其它高分子如聚氨酯基泡沫材料。

图1. C-MXene@PI多孔复合材料的可规模化制造:(a) MXene片和(b) C-MXene@PI复合泡沫的制备过程示意图;(c) MXene的TEM(插图为电子衍射图像)和(d) AFM图像;(e, f) 大面积(~60×60 cm²)C -MXene@PI多孔复合材料在卷曲前后的照片,显示了力学强度和柔性;C-MXene@PI多孔复合材料的(g) 微米大小的孔和(h) 孔壁的SEM图像,以及(i) Ti、C、O和N元素分布图。
2. C-MXene@PI复合泡沫:(a) 在室温下和(b) 浸泡在液氮(LN,‑196℃)中的超柔韧性展示;(c) 水接触角测试;(d) FTIR曲线;(e) 疏水性和防水性;(f) XRD图谱;(g) PI、 MXene@PI和C-MXene@PI复合泡沫的X波段EMISE;(h) MXene@PI和(i) C-MXene@PI复合泡沫在95% RH环境和60°C温度下储存不同天数后,(j) X波段EMI SE随时间的变化。

II C-MXene@PI多孔复合材料的电磁屏蔽性能

由于高导电MXene片在PI骨架上的均匀包覆以及导电网络的形成,相较于纯PI泡沫,1.5 mm厚的C-MXene@PI复合泡沫在X波段的EMI SE从1.4 dB显著增加到60 dB。复合泡沫在95% RH、60℃的环境中储存6天后仍保持44.4 dB的高EMISE,展现出较好的抗氧化性和屏蔽性能稳定性。复合泡沫的电磁屏蔽性能可以通过改变MXene的浸涂层数和复合泡沫厚度实现有效调节。复合泡沫在28.7至48.7 mg/cm³的密度下表现出令人满意的X波段的EMI SE (22.5~62.5 dB),获得了21,317 dB·cm²/g 的优异表面特定SE值。此外,多孔复合泡沫的屏蔽性能还表现出优异的抗机械变形稳定性。结合电磁屏蔽性能理论计算值进一步证明,C-MXene@PI复合泡沫的优异的电磁屏蔽性能来源于MXene、PI 泡沫骨架和多孔结构之间的协同作用。
3. (a) 具有不同浸涂层数的C-MXene@PI复合泡沫在X波段的EMISE;(b) 复合泡沫的密度和电导率与浸涂层数的关系;(c) 不同厚度的16L C-MXene@PI复合泡沫和(d) 弯曲1000次前后的10L和16L复合泡沫表现出良好的屏蔽性能稳定性;(e) 复合泡沫的电磁屏蔽性能(SE T 、SE A 和SE R )和SSE随样品密度的变化;(f) 实验测试EMI屏蔽性能(SE T 、SE A 和SE R )和理论计算值(Th-SE T 、Th-SE A 和Th-SE R )的比较;(g) 屏蔽机理示意图;(h) 屏蔽性能比较。
III C-MXene@PI多孔复合材料的电热性能

C-MXene@PI复合泡沫具有的良好热稳定性和优异的导电性,使得柔性复合泡沫可在4、6、8、10 V直流电压作用下,在数十秒内表面温度分别达到34、53、84、114°C,表现出稳定、可逆的电热效应。此外,复合泡沫更高的Hp值(Hp = dT/dP) 以及热成像图表明其相比于商用的合金板加热器,具有更为优异的电热性能和更为均匀的热分布,在低电压下具有显著、稳定,且可快速重现的电热特性。低电压下的高效除冰试验进一步证明了C-MXene@PI复合材料作为多功能加热器件的巨大应用潜力。

4. C-MXene@PI复合泡沫的电热性能:(a) TGA曲线;(b) 复合泡沫在不同电压下的电热曲线; (c) 24 h电热寿命测试;复合泡沫和商用合金板的(d) 稳态温度-输入功率密度曲线和(e, f) 热成像图;电热防冰试验:(g) 无外加电压,(h) 外加电压为8 V。

IV C-MXene@PI多孔复合材料的压阻传感性能

C-MXene@PI复合泡沫具有的高度坚韧性使其可以作为可穿戴传感器,用于检测人体运动。较高灵敏度的弯曲诱导拉伸变形证明了复合泡沫具有较高的传感灵敏度,弯曲角度越大,复合泡沫的相对电阻变化越大。即使样品的弯曲速度非常快,也能很好地检测和区分电阻的变化。同样地,复合泡沫对弯曲诱导压缩也产生了较高的传感灵敏度。根据复合泡沫传感器测量的电信号, 我们可以很容易的推断出在测试期间手指或手腕的运动情况,复合泡沫展现出良好的压阻传感性能。

5. 柔性复合泡沫的压阻传感性能:(a) C-MXene@PI复合泡沫的弯曲诱导拉伸和压缩模式;(b, c) 复合泡沫在不同弯曲角度诱导拉伸下的电阻变化;(d) 复合泡沫在不同弯曲角度诱导压缩下的电阻变化;(e, f) 通过电阻变化检测手指循环弯曲活动;(g, h) 通过电阻变化检测检测手腕循环弯曲活动。


作者简介



刘久荣

本文 通讯 作者

山东大学 教授
主要研究 领域

长期从事电磁仿真技术、电磁功能材料设计和研制、电磁性能测试分析等相关研究;包括:电磁屏蔽、吸波、传感器等材料。

个人简介







请到「今天看啥」查看全文