鸡兔同笼问题是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。
现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,聪明的小朋友,你能算出鸡和兔子各有多少只吗?
方法一:人见人爱“列表法”
【分析】如果二年级学生做这道题,可以用列表法。列表法容易理解,同时也是数学中一个重要的方法,学会后,为以后的学习打下坚实的基础。
根据上面的表格,我们可以看出,鸡为9只,兔子为5只。列表的时候,我们不要按顺序列,否则做题的速度很慢,比如,列完鸡为0只,兔子为14只,发现腿的数量是56条,和实际的38条相差较大,那么,你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些。
方法二:最快乐“画图法”
【分析】画图法也是低年级学生很好接受的一种方法,可以让数学变得形象化,有助于创造力的培养。假设14只全部是鸡,先把鸡画好。
这样就有14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。
方法三:最酷“金鸡独立法”
【分析】让每只鸡都一只脚站立,每只兔都用两只后脚站立,那么地上的总脚数是原来的一半,即19只脚。鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下的就是兔的头数19-14=5只,鸡有14-5=9只。
方法四:最逗“吹哨法”
分析:假设及和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。
方法五:最常用“假设法”
【分析】假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
方法六:最牛“特异功能法”
【分析】鸡有2条腿,比兔子少2条,这不公平,但是鸡有2只翅膀,兔子却没有。假设鸡有特异功能,把两只翅膀变成2条腿,那么鸡也有4条腿,此时腿的总数是14×4=56条,但实际上只有38条,为什么?因为我们把鸡的翅膀当作腿来算,所以鸡的翅膀有56-38=18只,鸡有18÷2=9只,兔就是14-9=5只。
方法七:最古老“砍足法”
【分析】假如把每只鸡砍掉1只脚、每只兔砍掉2只脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔脚的总数就由38只变成了19只;如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总数19与总头数14的差,就是兔子的只数,即19-14=5(只)。所以,鸡的只数就是35-12=23(只)了。