有的人会说:“那我们可以针对不同的作业场景,在提前通过配置参数来控制测量数据的影响力。”该方案确实是一个捷径,但是
真正的鲁棒性和可靠性强调导航系统在不改变其初始稳定配置的情况下抗故障和噪声(resist faults and noises)的能力,这是挑战性环境下导航系统的关键性能指标
。针对上文中提出的问题和挑战,本文拟介绍当前多传感器融合系统工作考虑和建模出传感器失效时的情况和数学模型,并分析和讨论相应的解决策略以保证导航定位或者SLAM系统在挑战场景下的鲁棒运行。
2、基于卡尔曼滤波算法的多传感器融合
本小节将简单介绍和讨论两种情况(同步数据系统和异步数据系统)下的共四种滤波处理框架。为了避免歧义,先放上英文标题:KALMAN FILTER ALGORITHMS FOR A MULTI-SENSOR SYSTEM。常见的基于卡尔曼滤波的多传感器融合系统中只有一个一种观测量作为误差的修正,此处的多传感器系统特指存在多个观测量来源的传感器系统,比如,系统存在多个雷达观测量在同一时刻或者不同时刻到达或者系统存在多种不同的传感器观测量“雷达、相机、卫星等”在同一时刻或者不同时刻到达。如此一来,当多传感器系统的规模很大、亦或者说是相当数目的冗余观测数据到达系统时,滤波框架的计算效率就成了重中之重。
更加具体的IMM内容可以参考论文:T. Kirubarajan and Y. Bar-Shalom, “Kalman filter versus IMM estimator: When do we need the latter?” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, pp. 1452–1457, Oct. 2003.
D. Willner, C. B. Chang and K. P. Dunn, "Kalman filter algorithms for a multi-sensor system," 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes, 1976, pp. 570-574, doi: 10.1109/CDC.1976.267794.
B. Safarinejadian and K. Hasanpoor, "Multi-sensor optimal information fusion Kalman filter with mobile agents in ring sensor networks," 2013 21st Iranian Conference on Electrical Engineering (ICEE), 2013, pp. 1-6, doi: 10.1109/IranianCEE.2013.6599857.
Q. Meng and L. -T. Hsu, "Resilient Interactive Sensor-Independent-Update Fusion Navigation Method," in IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 16433-16447, Sept. 2022, doi: 10.1109/TITS.2022.3150273.
P. D. Groves, Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. London, U.K.: Artech House, 2013, pp. 88–136.
Y. X. Yang, “Resilient PNT concept frame,” Acta Geodaetica Cartograph. Sinica, vol. 47, no. 7, pp. 893–898, 2018.
T. Kirubarajan and Y. Bar-Shalom, “Kalman filter versus IMM estimator: When do we need the latter?” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, pp. 1452–1457, Oct. 2003.
L.-T. Hsu, H. Tokura, N. Kubo, Y. Gu, and S. Kamijo, “Multiple faulty GNSS measurement exclusion based on consistency check in urban canyons,” IEEE Sensors J., vol. 17, no. 6, pp. 1909–1917, Mar. 2017.
N. Zhu, D. Betaille, J. Marais, and M. Berbineau, “Extended Kalman filter (EKF) innovation-based integrity monitoring scheme with C/N0 weighting,” in Proc. IEEE 4th Int. Forum Res. Technol. Soc. Ind. (RTSI), Palermo, Italy, Sep. 2018, pp. 1–6.
W. Jiang, D. Liu, B. Cai, C. Rizos, J. Wang, and W. Shangguan, “A faulttolerant tightly coupled GNSS/INS/OVS integration vehicle navigation system based on an FDP algorithm,” IEEE Trans. Veh. Technol., vol. 68, no. 7, pp. 6365–6378, Jul. 2019.
J. A. Hage, P. Xu, P. Bonnifait, and J. Ibanez-Guzman, “Localization integrity for intelligent vehicles through fault detection and position error characterization,” IEEE Trans. Intell. Transp. Syst., early access, Oct. 20, 2020, doi: 10.1109/TITS.2020.3027433.