专栏名称: 算法与数学之美
从生活中挖掘数学之美,在实践中体验算法之奇,魅力旅程,从此开始!
目录
相关文章推荐
算法与数学之美  ·  2025有望冲院士的国奖得主(名单) ·  昨天  
超级数学建模  ·  始祖鸟用的这块布到底有什么来头? ·  5 天前  
超级数学建模  ·  玩浪漫,没人能赢过阿玛尼 ·  3 天前  
九章算法  ·  Cruise被迫裁员50%!高额遣散费打脸科 ... ·  5 天前  
51好读  ›  专栏  ›  算法与数学之美

漫谈高等数学——空间和矩阵的关系

算法与数学之美  · 公众号  · 算法 数学  · 2016-10-25 22:41

正文

原文地址http://blog.sciencenet.cn/blog-81613-730893.html

一.矩阵和空间的思想

我在这里,把线性代数归于高等数学的范畴,因为它的理论适用于很多高等数学求解的领域,例如多项微分方程组的求解,离不开它。方程组,有什么物理/几何的意义吗?有,就是一种映射关系。下图中,左图代表了2维到2维的一一映射,注意,Ax=0只有0解代表对于满秩矩阵A,[0]只能被映射为[0]。右图代表A不满秩,就是2维映射到1维的情况,一个线段映射到一个点,也就是存在一个"解系"。


换个角度,由于线性映射常常就是线性变换,也就是映射回本身的集合映射,所以AX=B也可以看成是某种交点的性质。根据向量之间相交的情况区分,定解(直线或面交于一点,1和2中的交点),无穷解(直线平行或面多面共线,这个线就构成解系。1种的红黄色重合线和3中的共线),或者无解(平行或面没有公共交点,1中的平行线和4中的平行交线)。如下图所示。

符号系统还有什么作用?在线性代数和微分方程里面的算子理论就是符号系统的一种形式。如果ax=b有解,那么x=(a^-1)*b,其中|a|=0,我们可以推出对于矩阵方程组Ax=B有确定解,,那么这个解集是x=(A^-1)*b。这里-1表示逆矩阵,*表示矩阵相乘,其中|A|!=0。这样的表示是正确的科学的,要做的事情就是看看A^-1如何表示和得到。|A|不是绝对值而是行列式。A此时称为可逆矩阵----这个相当于实数运算里面要保证分母!=0。是不是很相似?

可逆有什么性质:如果对一个矩阵做线性变换,使用一个满秩的矩阵,那么做变换的结果,秩不变。要注意,把矩阵当成算子的时候,乘法的交换律不一定成立。秩的加法律和乘法律r(AB)>=r(A)+r(B),r(A+B)

. 矩阵运算的物理含义,举例

如果把矩阵看成一个2维坐标系离散值的几何,那么:

1.矩阵加法A+B就是A的各个点作平移,平移的度量是B当中对应的点。

2.矩阵乘法A*B就是一种线性映射:如果A是x/y坐标系,B是y/z坐标系,那么结果就是x->z的映射。举个例子,有3个国家,A国有三个城市,B国有三个城市,C国有两个城市。他们之间的道路状况如下用矩阵表示

那么从A国的每个城市出发经过B到达C的每个城市,各自有多少条线路?答案就是

A*B=[(2,1),(1,1),(2,1)]

3.我们深入的讨论一下"映射"的概念。举实数为例,y=ax是一个乘法映射,每一个x对应一个y。那么如果知道y求x呢?x=a^(-1)*y。这里影射函数f(x)=ax和反函数g(x)=a^(-1)x互逆。那么我们推广到N维坐标系空间里面就看到,矩阵就是一个N*N的坐标系映射。AX=B,把B看成Y,那么X=A^(-1)*Y。前提是A的范数!=0。我们构造的得到的A的1范数就是它的行列式。那么到底什么是映射?莱布尼茨说映射就是一组2元关系。在1维的时候表现为函数的形式f(z)=z,在多维的时候表现为矩阵的形式。1维的多次映射表现为函数的嵌套(gof),多维的情形可以写成矩阵的乘法。当然,限制条件是,矩阵能表示的是一个离散值的集合。当然,方阵才有逆----方阵是维数不变的N->N的一一映射,所以可能有且只有一个反映射,或者没有反映射。N->M的不同维数映射无法得到反映射。

4.形式化的定义。我们如果把矩阵看成一个"算子"的话,矩阵的乘法就能看成一个状态机的推演,推算的过程就是一次算子入栈,反推的过程就是算子出栈。那么显然就能够理解(AB)T=B(T)*A(T)以及(AB)^-1=B^(-1)*A^(-1),(AB)*=(B*)*(A*)。我们从伴随矩阵的性质AA*=|A|E得到A^(-1)=A*/|A|。矩阵左乘是行变换,右乘是列变换。把矩阵看成算子,同时可以把子矩阵看成算子,分块矩阵的相成和行列式求解也就很简单了。可以把小的矩阵当成一个数来看待。三角阵通过初等变换可以变成分块阵。

5.初等矩阵有3种,对应3种最基本的矩阵变换,也就是行列互换,行列数乘,一行/列数乘以后加到另一个行/列上面。初等矩阵都可逆。线性变换的结果是"相抵"的。一个矩阵总是能等于一个初等变换矩阵,并且逆矩阵的属性不变。对于可逆矩阵A,总有P1P2P3...PnAQ1Q2...Qn=E。或者说存在可逆矩阵P/Q使得PAQ=E。例如,如果A,B和A+B都可逆,那么A(-1)+B(-1)=B(-1)(B+A)A(-1)也是可逆的。

6.于是有了线性空间的概念:线性空间V就是一个集合,它同时满足V上的元素加法和对于数域K上面的乘法满足8条线性运算的规则。

7.为什么要讨论相似?这里面包含了一种不变性,是研究变换的数学工具。实数变换可以拆分成复数变换,例如酉矩阵,在晶体学里,酉变换叫做幺正变换,也就是将空间(可以是任意维的)中一组基矢做一个旋转操作,不改变矢量的大小和内积。而在量子力学里面,这个用处就更大了,本质上就是量子力学所说的 表象变换。是连接两个表象的桥梁。

矩阵代表了一种二元关系。函数映射是一种1维的二元关系,那么矩阵就是一种N维的二元关系。矩阵的方法就是一种映射的运算,之所以成为线形运算,是因为每一个投影都是具有拉伸和整体旋转的几何意义,相当于向量通过平面镜映射到一个投影平面上面的结果。这里只有平面镜和投影平面,没有哈哈镜和投影曲面。如果我们把2元的对应关系写成复数形式z=x+yi,那么f(z)就是一种投影的关系,只不过f(z)是直线方程的时候对应于一个等效的矩阵,f(z)如果不是直线方程,那么就是一种非线性变换。线形变换有许多很好的性质,能够保持信息的数量和结构保持某种程度的不变性,同时使得结果方便理解和处理。

映射还有一个性质,就是保角性。假设我们要研究x/y平面上面的x^2-y^2=c和xy=d这两个双曲线之间的夹角,怎么办?我们可以用微元的办法(微分几何)来求出。但是这样当然很麻烦,而且是一题一解(牛顿喜欢这样做,但是莱布尼茨反对这种解决方案),不太符合公理系统和形式化推理的思想。考虑z1=x+yi,z2=y-xi,f(z)=z^2 费波纳契数列的求解遇到过这样的问题:

一个数列a(-1)=1,a(0)=1,a(n+2)=a(n+1)+a(n)求an的通项公式。用中学时代的眼光我们可以观察到,如果an当n->无穷的时候,是个等比数列,显然符合递推公式。那么我们就可以假设an=入a(n-1),那么由递推公式我们就可以得到:入^2*a(n-1)=入*a(n-1)+a(n-1),求得入=(1+根号5)/2(应为这个比值要>1),那么an=入^n*a0。当然这个只是一个近似公式,结果不准确而且推导的过程不严格。那么我们用大学的线形代数来求解。我们考虑修正方案构造一个等比数列,an+Aa(n-1)=B(a(n-1)+A(a(n-2),化简得到an=(B-A)a(n-1)+Aa(n-2),于是B-A=1,AB=1,解得A/B=(根号5+-1)/2。

三.具体的性质和计算

1.对于克莱姆法则求解的过程,我们看到Ax=0的情况,对应于每个解分量的克莱姆除法式,Xn=Dn/DA,Dn矩阵中有一个全为0的列向量,那么求行列式的过程(全乘)结果肯定为0,所以方程组至少有个解向量就是[0,0,0,....]。这验证了我们前面说的,空间直线/面相交于原点的情况。







请到「今天看啥」查看全文