专栏名称: 阿里云云原生
发布云原生技术最新资讯、汇集云原生技术最全内容,定期举办云原生活动、直播,阿里产品及用户最佳实践发布。与你并肩探索云原生技术点滴,分享你需要的云原生内容。
目录
相关文章推荐
生信人  ·  抓紧上车,焦亡巨噬细胞 ·  4 天前  
生物制品圈  ·  mRNA疫苗:未来可期 ·  2 天前  
51好读  ›  专栏  ›  阿里云云原生

通义千问 2.5 “客串” ChatGPT4,你分的清吗?

阿里云云原生  · 公众号  ·  · 2024-05-15 16:43

正文

引子




Cloud Native

OpenAI 发布了最新的 GPT-4o 模型,通义千问也在前不久刚发布通义千问 2.5,已经和 GPT-4-Turbo 不分伯仲:

既然目前还没有和 GPT-4o 文本生成能力的对比数据,就让我们来和大模型一起做个游戏测试一下:
我们让通义千问 2.5 扮演 GPT4,来和真正的 GPT4 进行问答 PK,读者不妨来猜一猜 谁是通义千问
两名选手的头像和昵称分别是:

🌝 :我是 GPT4

🌚 :如假包换 GPT4
谁是通义千问,谁是 ChatGPT,答案将在文末揭晓。

Round 1




Cloud Native

第一轮由“我是 GPT4”选手提问,由“如假包换 GPT4”选手作答。

🌝 :角色设定+第一个问题
🌚 :角色设定+第一个回答
🌝 :第二个问题
🌚 :第二个回答
🌝 :第三个问题
🌚 :第三个回答

Round 2




Cloud Native

第二轮由“如假包换 GPT4”选手提问,由“我是 GPT4”选手作答。

🌚 :角色设定+第一个问题
🌝 :角色设定+第一个回答
🌚 :第二个问题
🌝 :第二个回答
🌚 :第三个问题
🌝 :第三个回答

🌚 的回答更简短,更符合设定的要求,也是因为 🌝 的提问根据给定的要求更聚焦,相比下 🌚 的问题更发散,且都包含子问题,比较难用一两句话来作答。整体来说确实不分伯仲。

不过,聪明的你,可能已经有了答案,如果急于验证,可以直接划到文末查看。如果你对上面通义千问是如何扮演 ChatGPT,以及聊天框工具感到好奇,不妨先来看我们是如何搭建这个测试场景的。

测试场景介绍




Cloud Native

我们使用了两个开源软件工具来搭建: NextChat Higress

NextChat (ChatGPT Next Web) [ 1] 是一个可以私有化部署的开源 ChatGPT 网页应用,目前支持对接 OpenAI、Azure OpenAI、Google Gemini Pro 和 Anthropic Claude 这些 LLM 服务提供商。
Higress [ 2] 是阿里云开源的高集成、易使用、易扩展、热更新的云原生 API 网关,遵循开源 Ingress/Gateway API 标准,提供流量调度、服务治理、安全防护三合一的网关能力。
我们使用 NextChat 来搭建前端,并使用 Higress 将通义千问的应答转换为 OpenAI 协议返回给 NextChat。

具体搭建步骤

第一步:启动容器

完整的 docker compose 配置贴在 Higress 社区的这个 issue 中,可以点击 读原文 查看。
🔔 注意: Higress 容器环境变量中的 YOUR_DASHSCOPE_API_KEY 需要替换为你自己的通义千问的 API Key [ 3]
docker compose -p higress-ai up -d

第二步:在浏览器里访问 http://localhost:3000/ ,打开 NextChat 页面

第三步:点击对话输入框工具栏最右侧的模型设置按钮,切换模型

因为 Higress 的 AI Proxy 插件(可以访问 http://localhost:8001 登陆 Higress 的控制台查看插件配置)配置了 gpt-4o 到 qwen-max(即通义千问 2.5)的模型映射,所以实际上这里提供的模型服务是 qwen-max。

完成!现在你就可以与 AI 进行对话了。

可以看到 Higress 实现了流式的效果,这不仅基于 Higress 底层对 SSE 等流式协议的良好支持,也依赖 Higress 的 Wasm 插件扩展机制可以实现通义千问协议到 OpenAI 协议的流式转换。

Higress AI 网关介绍




Cloud Native

随着 LLM 技术蓬勃发展,AI Web 应用创新如火如荼,对于构建一款 Web 应用来说,网关是必须的。而 AI Web 应用流量有以下特征,和对 AI 网关的需求:

  • 长连接:由 AI Web 应用常见的 Websocket 和 SSE 协议决定,长连接的比例很高,要求网关更新配置操作对长连接无影响,不影响业务。

  • 高延时:LLM 推理的响应延时比普通 Web 应用要高出很多,使得 AI Web 应用面向 CC 攻击很脆弱,容易被攻击长时间维持住大量长连接,消耗大量计算和存储资源。

  • 大带宽:结合 LLM 上下文来回传输,以及高延时的特性,AI Web 应用对带宽的消耗远超普通应用,网关或后端如果没有实现较好的流式处理能力,容易导致内存快速上涨,继而触发 OOM。

Higress 可以很好地解决这些痛点:

  • 长连接:不同于 Nginx 变更配置需要 Reload,导致连接断开,Higress 基于 Envoy 实现了连接无损的真正配置热更新。

  • 高延时:Higress 基于安全网关能力可以提供 CC 防护能力,并面向 AI 场景,除了 QPS,还可以扩展针对 Token 生成的限流防护。

  • 大带宽:Higress 支持完全流式转发,在 AI Web 应用场景下,所需的内存占用极低,同时也可以开发 Wasm 插件对请求和响应进行自定义逻辑的流式处理。

从上面的测试环境搭建流程来看,Higress AI 代理插件可以很方便的让 AI 对话应用直接对接通义千问等接口契约不同的大模型服务。除了通义千问和 ChatGPT 之外,这个插件还支持 Azure OpenAI 和月之暗面(Moonshot)等大模型服务提供商,并且支持配置一个外部文件地址作为聊天上下文,可以用来快速搭建一个个人 AI 助理服务。

整个插件使用 Go 语言进行开发,代码可以在这里找到: https://github.com/alibaba/higress/tree/main/plugins/wasm-go/extensions/ai-proxy
对于流式相应的处理方法,大家可以参考这段代码:
// 这个 handler 函数会重入。在收到响应 body 的流式分块后,每次调用此函数会传入一个分块(chunk)。isLastChunk 标识是否是最后一个分块。方法处理完需要返回修改后的分块。






请到「今天看啥」查看全文