专栏名称: 人工智能头条
专注人工智能技术前沿、实战技巧及大牛心得。
目录
相关文章推荐
机器之心  ·  超级Agent,鸣枪起跑 ·  昨天  
宝玉xp  ·  BusinessInsider:为什么Sam ... ·  昨天  
黄建同学  ·  Google 新出的 Gemini 2.0 ... ·  昨天  
51好读  ›  专栏  ›  人工智能头条

干货 | 1400篇机器学习的文章中,这10篇是最棒的!

人工智能头条  · 公众号  · AI  · 2018-07-11 17:55

正文


译者 | ang010ela

编辑 | 姗姗

出品 | 人工智能头条(公众号ID:AI_Thinker)


【导读】在过去的一个月中, 作者从近 1400 篇有关机器学习的文章中挑选了最有可能帮助职业生涯发展的 10 篇推荐给大家(入选比率为0.7%)。


(此前发布过多篇收藏党喜欢的文章,也是来自Mybridge:① Python 开源项目 Top 10 精选,平均star为1128! 从15000个Python开源项目中精选的Top30,Github平均star为3707,赶紧收藏! 我们从8800个机器学习开源项目中精选出Top30,推荐给你 5月Python好文TOP 10新鲜出炉 Keras、卷积神经网络、Pytorch 以及音频处理优秀文章推荐 机器学习 TOP 10 必读论文 Top 50机器学习项目实战总结


前言


这10篇文章涉及了 DeepMind 提出的 GQN 网络 、Open AI 多智能体在游戏任务中大获全胜背后的原理与技术、TensorFlow 的实践经验、如何给模型调优、如何用机器学习生成惊艳酷炫的作品、如何进行面部识别与只用 10 行代码就操作了一波目标检测等技术。可以说这波操作厉害了,各种类型总有一个会是你喜欢的!


No.1 Neural scene representation and rendering: DeepMind self-training computer creates 3D model from 2D snapshots



摘要: DeepMind 在 Science 上发表了新论文《Neural scene representation and rendering》。论文介绍了一种新型计算机视觉算法,可以基于某个单一的平面图像,去从不同角度“想象”它的三维模型。该算法被称之为生成查询网络( GQN )。只需给人工智能一些二维场景图片,比如说一面砖墙、楼梯上的明亮球体和方块,人工智能就可以产生从不同角度观察这个场景的三维模拟图、渲染物体不同的面甚至解决相同光源下的阴影位置问题。GQN 建立在大量关于多视图几何,生成建模,无监督学习和预测学习的相关工作的研究基础上,但是它允许将相同的模型应用与一系列不同的环境,与更传统的计算机视觉技术相比,虽然还存在许多限制,然而随着新数据源的出现及硬件的不断进步,DeepMind 公司希望能够研究 GQN 框架在真实场景中更高分辨率图像中的应用;在未来的工作中,探索 GQN 在场景理解的更广泛应用。


论文题目:

Neural scene representation and rendering

论文地址:

http://science.sciencemag.org/content/360/6394/1204

文章地址:

https://deepmind.com/blog/neural-scene-representation-and-rendering


聚焦 ICML


Deep Mind 近日也发表推文谈到,关于 GQN 已经有了新的拓展与应用。在本届 ICML 大会上,Google 将会与大家一起分享关于“深度生成模型的理论与应用”(Theoretical Foundations and Applications of Deep Generative Models)的主题研讨会,届时大家可以学习到更多有关 GQN 的内容。


研讨会介绍:

https://sites.google.com/corp/view/tadgm/home


No.2 A machine has figured out Rubik’s Cube all by itself



摘要: 加州大学欧文分校的StephenMcAleer及其同事开创了一种新的深度学习技术,并认为他们的方法是对问题进行推理的一种形式,称为“自主学习迭代(Autodidactic iteration)”,可以让机器自行解决魔方的问题,而无需人工协助。已经掌握的技巧是找到机器创建自己的奖励系统的方法。这是个意义重大的里程碑,因为新方法解决了计算机科学中的一个重要问题:如何在最少的帮助下让机器解决复杂的问题。当然,真正的考验是如何将这种方法应用到更复杂的问题上,也让很多人关心它将如何做到。


论文题目:

Solving the Rubik's Cube Without Human Knowledge

论文地址:

https://arxiv.org/abs/1805.07470

文章地址:

https://www.technologyreview.com/s/611281/a-machine-has-figured-out-rubiks-cube-all-by-itself/


No.3 A visual introduction to machine learning, Part II



摘要: 在机器学习中,应用统计学习技术来自动识别数据模型,还可用于进行高度准确的预测。利用数据创建一个机器学习模型,而建模的目标是通过识别和编码数据模型来逼近显示真实的情况,如果模型过于简单或复杂都会出错,本文章是机器学习的视觉介绍系列文章的第二篇:如何调整模型与偏差-方差的权衡。


本文地址:

http://www.r2d3.us/visual-intro-to-machine-learning-part-2/

此系列文章第一篇地址:

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/


NO.4 OpenAI Five: Defeating amateur human players at Dota 2





摘要: OpenAI自学习多智能体5v5团队战击败DOTA2业余人类玩家,这代表着AI在决策智能上的能力大幅向前推进。OpenAI Five之所以战胜DOTA2的业余选手,主要原因在于它使用“近端策略优化”(PPO)的扩展版算法,在256个GPU和128000个CPU内核上进行训练。每个英雄都使用单独的LSTM,不使用人类数据,最终AI能够学会识别策略。比尔·盖茨也发推文称赞:这是一件大事,因为它们的胜利需要团队合作和协作——这是推进人工智能的一个巨大里程碑。


文章地址:

https://blog.openai.com/openai-five


NO.5 Tensorflow: The Confusing Parts (1)







请到「今天看啥」查看全文