专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
爱可可-爱生活  ·  【macmon:适用于苹果硅处理器的性能监控 ... ·  昨天  
爱可可-爱生活  ·  【Real-IAD ... ·  2 天前  
爱可可-爱生活  ·  今日推介(第1585期):面向医疗挑战问题的 ... ·  4 天前  
人工智能那点事  ·  夜骑开封爆火,多条路段严重拥堵!郑州、开封两 ... ·  4 天前  
人工智能学家  ·  Cell | AI取代科研人员还有多远? ·  1 周前  
51好读  ›  专栏  ›  机器学习研究会

【学习】考察数据科学家集成方法的40道题(及答案)

机器学习研究会  · 公众号  · AI  · 2017-02-14 19:06

正文


点击上方“机器学习研究会”可以订阅哦
摘要
 

转自:爱可可-爱生活

Introduction

Ensemble modeling is a powerful way to improve the performance of your machine learning models. If you wish to be on the top of leaderboard in any machine learning competition or want to improve models you are working on – ensemble is the way to go. The meme below kind of summarizes the power of ensembling:

Given the importance of ensemble modeling, we decided to test our community on ensemble modeling. The test included basics of ensemble modeling and its practical applications.

A total of 1411 participants registered for the skill test. If you missed taking the test, here is your opportunity for you to find out how many questions you could have answered correctly.


Overall Results

Below is the distribution of scores, this will help you evaluate your performance:

You can access your performance here. More than 230 people participated in the skill test and the highest score was 31. Here are a few statistics about the distribution.

Overall distribution

  • Mean Score: 17.54

  • Median Score: 18

  • Mode Score: 21


Helpful Resources

5 Easy questions on Ensemble Modeling everyone should know

Powerful ‘Trick’ to choose right models in Ensemble Learning

Basics of Ensemble Learning Explained in Simple English

Powerful ‘Trick’ to choose right models in Ensemble Learning


链接:

https://www.analyticsvidhya.com/blog/2017/02/40-questions-to-ask-a-data-scientist-on-ensemble-modeling-techniques-skilltest-solution/


原文链接:

http://weibo.com/1402400261/EvnnJ0xvf?ref=collection&type=comment#_rnd1487062691148

“完整内容”请点击【阅读原文】
↓↓↓