专栏名称: 超级数学建模
全国首家专业数学建模自媒体,提供数模学习的第一手资料。该平台由多名企业资深KDD专家及国际、国家数模竞赛一等奖得主维护,敬请关注!
目录
相关文章推荐
超级数学建模  ·  如何评价辣妹儿? ·  2 天前  
超级数学建模  ·  那些数学好的学霸,这个能力培养很到位... ·  2 天前  
超级数学建模  ·  当杠精在网上遇到实诚人... ·  3 天前  
超级数学建模  ·  限时领 | ... ·  1 周前  
51好读  ›  专栏  ›  超级数学建模

机器学习三部曲

超级数学建模  · 公众号  · 数学  · 2018-05-31 22:27

正文


目前,机器学习的使用日渐成为趋势。


作为人工智能的核心,机器学习是一门多领域的交叉学科,专门研究计算机模拟或实现人类学习行为的方法,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。


简单来说,机器学习就是优化数学方程式的过程。但在实际生活中,机器学习已经在金融、科研等领域蓬勃发展。


比如,就金融来说

可以通过爬虫技术获取股票数据;

可以通过文字信息进行文本分析;

可以搭建回测系统;

可以开发交易平台。

既然机器学习如此火爆,那如何追赶这股技术潮流呢?


现超级数学建模携手唐老师以Python为基础,向大家精心准备《Python机器学习》系列课程。


唐老师将系统讲解Python的基础知识常用的工具包和算法以及四个主流的Python库,并借助真实案例带领大家进行项目实战,全程还会附送完整的代码进行课程教学与实战演练。


相信,每天都能感受到能力的提升!


《Python机器学习》系列课程介绍


基础篇(共131学时)

(课程大纲)

《Python机器学习实战课程》(¥398)

第一章 AI时代人工智能入学指南(免费试学)

第二章 Python快速入门(免费试学)

第三章 Python工具:科学计算库Numpy

第四章 Python工具:数据分析处理库Pandas

第五章 Python工具:可视化库Matplotlib

第六章 算法:线性回归算法

第七章 算法:梯度下降原理

第八章 算法:逻辑回归算法

第九章 案例:Python实现逻辑回归与梯度下降

第十章 案例:使用Python分析科比生涯数据

第十一章 案例:信用卡欺诈检测

第十二章 算法:决策树

第十三章 决策树Sklearn实例

第十四章 算法:随机森林与集成算法

第十五章 案例:Kaggle竞赛案例:泰坦尼克获救预测

第十六章 算法:线性支持向量机

第十七章 非线性支持向量机

第十八章 支持向量调参实战

第十九章 计算机视觉挑战

第二十章 神经网络必备基础知识点

第二十一章 最优化与反向传播

第二十二章 神经网络整体架构    

第二十三章 案例实战CIFAR图像分类任务 

第二十四章 Tensorflow框架    

第二十五章 Mnist手写字体识别    

第二十六章 PCA降维操作与SVD矩阵分解    

第二十七章 聚类与集成算法  

第二十八章 机器学习业务流程   


长按识别二维码

即可报名学习


进阶篇(共113学时)

(课程大纲)


《Python机器学习实战——进阶课程》(¥398)

第一章:Seaborn可视化库(免费试学)

第二章:降维算法-线性判别分析

第三章:Python实现线性判别分析

第四章:PCA主成分分析

第五章:Python实现PCA主成分分析

第六章:EM算法

第七章:GMM聚类实践

第八章:Xboost算法

第九章:推荐系统

第十章:推荐系统实践

第十一章:贝叶斯算法

第十二章:Python文本数据分析

第十三章:KMEANS聚类

第十四章:DBSCAN聚类

第十五章:聚类实践

第十六章:时间序列ARIMA模型

第十七章: 时间序列预测任务

第十八章:语言模型

第十九章:自然语言处理word2vec

第二十章:使用word2vec进行分类任务

第二十一章:Gensim中文词向量建模

第二十二章:自然语言处理-递归神经网络

第二十三章:递归神经网络实战-情感分析

第二十四章:探索性数据分析-赛事数据集分析

第二十五章:探索性数据分析-农粮数据分析

长按识别二维码

即可报名学习


拓展篇(共88学时)

(课程大纲)

《Python数据科学必备四大主流库》(¥198)

第一章:Python基础(免费试学)

第二章:科学计算库Numpy

第三章:数据分析处理库Pandas

第四章:可视化库Matplotlib

第五章:Seaborn可视化库


长按识别二维码

即可报名学习

课程特色

  • 学习平台——腾讯课堂

  • 上课形式——录播(可反复观看)

  • 学习周期——两个月(学习建议:2小时/周)

  • 答疑方式——课程配有专属学习群,老师随时解答

  • 课程资料——配有专属课件代码与实战案例

  • 课程收益——快速掌握机器学习的基础知识;掌握机器学习的四大主流库;独立完成项目实战

适用群体

  • 零基础使用者

  • 机器学习、深度学习爱好者

  • 科研工作者,特别是打算迈入人工智能领域的工作者


授课老师

作为主讲人,唐老师将多年的机器学习经验和Python使用技巧分享给大家。因此课程传授的不仅是知识,还有思维和方法


特别提醒

基础篇

  • 课程价格——¥398

  • 课程优惠

新学员

限量发放50元优惠券,公众号后台对话框回复机器学习即可领取

老学员(报名过我们任一付费课程的学员)

评价已报名的课程,并截图发给助教,即可领取55元优惠券


进阶篇

  • 课程价格——¥398

  • 课程优惠

新学员

限量发放50元优惠券,公众号后台对话框回复实战进阶即可领取

老学员(报名过我们任一付费课程的学员)

评价已报名的课程,并截图发给助教,即可领取55元优惠券


拓展篇

  • 课程价格——¥198

  • 课程优惠

本课程暂无优惠


注意事项

Python交流群:114109947

课程有疑问成功报名均请联系助教

小七微信:zwjlee001

大鱼QQ:210187565


来吧,点击下方“阅读原文”,跟随着老师的脚步,提升自我!